| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetlem9.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihmeetlem9.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihmeetlem9.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dihmeetlem9.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 5 |
|
dihmeetlem9.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 6 |
|
dihmeetlem9.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 7 |
|
dihmeetlem9.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
dihmeetlem9.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 9 |
|
dihmeetlem9.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
3 7 10
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑈 ∈ LMod ) |
| 12 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 13 |
12
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 14 |
11 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
| 15 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
| 16 |
15
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 17 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 18 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) |
| 19 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 21 |
1 3 9 7 12
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 22 |
10 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 23 |
14 22
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 24 |
1 6
|
atbase |
⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
| 26 |
1 3 9 7 12
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑝 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑝 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 27 |
10 25 26
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑝 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 28 |
14 27
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑝 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 29 |
1 3 9 7 12
|
dihlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 30 |
10 18 29
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑌 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 31 |
14 30
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐼 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
| 32 |
1 2 5
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 33 |
16 17 18 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 34 |
1 2 3 9
|
dihord |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ) |
| 35 |
10 20 18 34
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ) |
| 36 |
33 35
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) |
| 37 |
8
|
lsmmod |
⊢ ( ( ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑝 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑌 ) ∈ ( SubGrp ‘ 𝑈 ) ) ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊆ ( 𝐼 ‘ 𝑌 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) = ( ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑝 ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
| 38 |
23 28 31 36 37
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) = ( ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑝 ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
| 39 |
|
lmodabl |
⊢ ( 𝑈 ∈ LMod → 𝑈 ∈ Abel ) |
| 40 |
11 39
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑈 ∈ Abel ) |
| 41 |
8
|
lsmcom |
⊢ ( ( 𝑈 ∈ Abel ∧ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑝 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 42 |
40 23 28 41
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑝 ) ) = ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 43 |
42
|
ineq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( 𝐼 ‘ 𝑝 ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
| 44 |
38 43
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( ( 𝐼 ‘ 𝑝 ) ⊕ ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ) ∩ ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) ⊕ ( ( 𝐼 ‘ 𝑝 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) ) |