Metamath Proof Explorer


Theorem dihmeetlem10N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem9.b 𝐵 = ( Base ‘ 𝐾 )
dihmeetlem9.l = ( le ‘ 𝐾 )
dihmeetlem9.h 𝐻 = ( LHyp ‘ 𝐾 )
dihmeetlem9.j = ( join ‘ 𝐾 )
dihmeetlem9.m = ( meet ‘ 𝐾 )
dihmeetlem9.a 𝐴 = ( Atoms ‘ 𝐾 )
dihmeetlem9.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihmeetlem9.s = ( LSSum ‘ 𝑈 )
dihmeetlem9.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihmeetlem10N ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑝 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼 ‘ ( 𝑌 𝑝 ) ) ) )

Proof

Step Hyp Ref Expression
1 dihmeetlem9.b 𝐵 = ( Base ‘ 𝐾 )
2 dihmeetlem9.l = ( le ‘ 𝐾 )
3 dihmeetlem9.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihmeetlem9.j = ( join ‘ 𝐾 )
5 dihmeetlem9.m = ( meet ‘ 𝐾 )
6 dihmeetlem9.a 𝐴 = ( Atoms ‘ 𝐾 )
7 dihmeetlem9.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 dihmeetlem9.s = ( LSSum ‘ 𝑈 )
9 dihmeetlem9.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
10 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → 𝐾 ∈ HL )
11 simpl2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → 𝑋𝐵 )
12 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → 𝑌𝐵 )
13 simprll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → 𝑝𝐴 )
14 simprr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → 𝑝 𝑋 )
15 1 2 4 5 6 dihmeetlem5 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑝𝐴𝑝 𝑋 ) ) → ( 𝑋 ( 𝑌 𝑝 ) ) = ( ( 𝑋 𝑌 ) 𝑝 ) )
16 10 11 12 13 14 15 syl32anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ( 𝑋 ( 𝑌 𝑝 ) ) = ( ( 𝑋 𝑌 ) 𝑝 ) )
17 16 fveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ( 𝐼 ‘ ( 𝑋 ( 𝑌 𝑝 ) ) ) = ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑝 ) ) )
18 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 10 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → 𝐾 ∈ Lat )
20 1 6 atbase ( 𝑝𝐴𝑝𝐵 )
21 13 20 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → 𝑝𝐵 )
22 1 4 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑝𝐵 ) → ( 𝑌 𝑝 ) ∈ 𝐵 )
23 19 12 21 22 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ( 𝑌 𝑝 ) ∈ 𝐵 )
24 1 2 3 4 5 6 dihmeetlem6 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ¬ ( 𝑋 ( 𝑌 𝑝 ) ) 𝑊 )
25 1 2 5 3 9 dihmeetcN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ( 𝑌 𝑝 ) ∈ 𝐵 ) ∧ ¬ ( 𝑋 ( 𝑌 𝑝 ) ) 𝑊 ) → ( 𝐼 ‘ ( 𝑋 ( 𝑌 𝑝 ) ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼 ‘ ( 𝑌 𝑝 ) ) ) )
26 18 11 23 24 25 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ( 𝐼 ‘ ( 𝑋 ( 𝑌 𝑝 ) ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼 ‘ ( 𝑌 𝑝 ) ) ) )
27 17 26 eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ 𝑝 𝑋 ) ) → ( 𝐼 ‘ ( ( 𝑋 𝑌 ) 𝑝 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼 ‘ ( 𝑌 𝑝 ) ) ) )