Metamath Proof Explorer


Theorem dihmeetlem10N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem9.b
|- B = ( Base ` K )
dihmeetlem9.l
|- .<_ = ( le ` K )
dihmeetlem9.h
|- H = ( LHyp ` K )
dihmeetlem9.j
|- .\/ = ( join ` K )
dihmeetlem9.m
|- ./\ = ( meet ` K )
dihmeetlem9.a
|- A = ( Atoms ` K )
dihmeetlem9.u
|- U = ( ( DVecH ` K ) ` W )
dihmeetlem9.s
|- .(+) = ( LSSum ` U )
dihmeetlem9.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihmeetlem10N
|- ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` X ) i^i ( I ` ( Y .\/ p ) ) ) )

Proof

Step Hyp Ref Expression
1 dihmeetlem9.b
 |-  B = ( Base ` K )
2 dihmeetlem9.l
 |-  .<_ = ( le ` K )
3 dihmeetlem9.h
 |-  H = ( LHyp ` K )
4 dihmeetlem9.j
 |-  .\/ = ( join ` K )
5 dihmeetlem9.m
 |-  ./\ = ( meet ` K )
6 dihmeetlem9.a
 |-  A = ( Atoms ` K )
7 dihmeetlem9.u
 |-  U = ( ( DVecH ` K ) ` W )
8 dihmeetlem9.s
 |-  .(+) = ( LSSum ` U )
9 dihmeetlem9.i
 |-  I = ( ( DIsoH ` K ) ` W )
10 simpl1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> K e. HL )
11 simpl2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> X e. B )
12 simpl3
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> Y e. B )
13 simprll
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> p e. A )
14 simprr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> p .<_ X )
15 1 2 4 5 6 dihmeetlem5
 |-  ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( p e. A /\ p .<_ X ) ) -> ( X ./\ ( Y .\/ p ) ) = ( ( X ./\ Y ) .\/ p ) )
16 10 11 12 13 14 15 syl32anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( X ./\ ( Y .\/ p ) ) = ( ( X ./\ Y ) .\/ p ) )
17 16 fveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( I ` ( X ./\ ( Y .\/ p ) ) ) = ( I ` ( ( X ./\ Y ) .\/ p ) ) )
18 simpl1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( K e. HL /\ W e. H ) )
19 10 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> K e. Lat )
20 1 6 atbase
 |-  ( p e. A -> p e. B )
21 13 20 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> p e. B )
22 1 4 latjcl
 |-  ( ( K e. Lat /\ Y e. B /\ p e. B ) -> ( Y .\/ p ) e. B )
23 19 12 21 22 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( Y .\/ p ) e. B )
24 1 2 3 4 5 6 dihmeetlem6
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> -. ( X ./\ ( Y .\/ p ) ) .<_ W )
25 1 2 5 3 9 dihmeetcN
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ ( Y .\/ p ) e. B ) /\ -. ( X ./\ ( Y .\/ p ) ) .<_ W ) -> ( I ` ( X ./\ ( Y .\/ p ) ) ) = ( ( I ` X ) i^i ( I ` ( Y .\/ p ) ) ) )
26 18 11 23 24 25 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( I ` ( X ./\ ( Y .\/ p ) ) ) = ( ( I ` X ) i^i ( I ` ( Y .\/ p ) ) ) )
27 17 26 eqtr3d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ X e. B /\ Y e. B ) /\ ( ( p e. A /\ -. p .<_ W ) /\ p .<_ X ) ) -> ( I ` ( ( X ./\ Y ) .\/ p ) ) = ( ( I ` X ) i^i ( I ` ( Y .\/ p ) ) ) )