Metamath Proof Explorer


Theorem dihmeetlem10N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem9.b B=BaseK
dihmeetlem9.l ˙=K
dihmeetlem9.h H=LHypK
dihmeetlem9.j ˙=joinK
dihmeetlem9.m ˙=meetK
dihmeetlem9.a A=AtomsK
dihmeetlem9.u U=DVecHKW
dihmeetlem9.s ˙=LSSumU
dihmeetlem9.i I=DIsoHKW
Assertion dihmeetlem10N KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙p=IXIY˙p

Proof

Step Hyp Ref Expression
1 dihmeetlem9.b B=BaseK
2 dihmeetlem9.l ˙=K
3 dihmeetlem9.h H=LHypK
4 dihmeetlem9.j ˙=joinK
5 dihmeetlem9.m ˙=meetK
6 dihmeetlem9.a A=AtomsK
7 dihmeetlem9.u U=DVecHKW
8 dihmeetlem9.s ˙=LSSumU
9 dihmeetlem9.i I=DIsoHKW
10 simpl1l KHLWHXBYBpA¬p˙Wp˙XKHL
11 simpl2 KHLWHXBYBpA¬p˙Wp˙XXB
12 simpl3 KHLWHXBYBpA¬p˙Wp˙XYB
13 simprll KHLWHXBYBpA¬p˙Wp˙XpA
14 simprr KHLWHXBYBpA¬p˙Wp˙Xp˙X
15 1 2 4 5 6 dihmeetlem5 KHLXBYBpAp˙XX˙Y˙p=X˙Y˙p
16 10 11 12 13 14 15 syl32anc KHLWHXBYBpA¬p˙Wp˙XX˙Y˙p=X˙Y˙p
17 16 fveq2d KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙p=IX˙Y˙p
18 simpl1 KHLWHXBYBpA¬p˙Wp˙XKHLWH
19 10 hllatd KHLWHXBYBpA¬p˙Wp˙XKLat
20 1 6 atbase pApB
21 13 20 syl KHLWHXBYBpA¬p˙Wp˙XpB
22 1 4 latjcl KLatYBpBY˙pB
23 19 12 21 22 syl3anc KHLWHXBYBpA¬p˙Wp˙XY˙pB
24 1 2 3 4 5 6 dihmeetlem6 KHLWHXBYBpA¬p˙Wp˙X¬X˙Y˙p˙W
25 1 2 5 3 9 dihmeetcN KHLWHXBY˙pB¬X˙Y˙p˙WIX˙Y˙p=IXIY˙p
26 18 11 23 24 25 syl121anc KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙p=IXIY˙p
27 17 26 eqtr3d KHLWHXBYBpA¬p˙Wp˙XIX˙Y˙p=IXIY˙p