Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetlem9.b | |
|
dihmeetlem9.l | |
||
dihmeetlem9.h | |
||
dihmeetlem9.j | |
||
dihmeetlem9.m | |
||
dihmeetlem9.a | |
||
dihmeetlem9.u | |
||
dihmeetlem9.s | |
||
dihmeetlem9.i | |
||
Assertion | dihmeetlem10N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetlem9.b | |
|
2 | dihmeetlem9.l | |
|
3 | dihmeetlem9.h | |
|
4 | dihmeetlem9.j | |
|
5 | dihmeetlem9.m | |
|
6 | dihmeetlem9.a | |
|
7 | dihmeetlem9.u | |
|
8 | dihmeetlem9.s | |
|
9 | dihmeetlem9.i | |
|
10 | simpl1l | |
|
11 | simpl2 | |
|
12 | simpl3 | |
|
13 | simprll | |
|
14 | simprr | |
|
15 | 1 2 4 5 6 | dihmeetlem5 | |
16 | 10 11 12 13 14 15 | syl32anc | |
17 | 16 | fveq2d | |
18 | simpl1 | |
|
19 | 10 | hllatd | |
20 | 1 6 | atbase | |
21 | 13 20 | syl | |
22 | 1 4 | latjcl | |
23 | 19 12 21 22 | syl3anc | |
24 | 1 2 3 4 5 6 | dihmeetlem6 | |
25 | 1 2 5 3 9 | dihmeetcN | |
26 | 18 11 23 24 25 | syl121anc | |
27 | 17 26 | eqtr3d | |