Metamath Proof Explorer


Theorem dihmeetlem10N

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 6-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetlem9.b B = Base K
dihmeetlem9.l ˙ = K
dihmeetlem9.h H = LHyp K
dihmeetlem9.j ˙ = join K
dihmeetlem9.m ˙ = meet K
dihmeetlem9.a A = Atoms K
dihmeetlem9.u U = DVecH K W
dihmeetlem9.s ˙ = LSSum U
dihmeetlem9.i I = DIsoH K W
Assertion dihmeetlem10N K HL W H X B Y B p A ¬ p ˙ W p ˙ X I X ˙ Y ˙ p = I X I Y ˙ p

Proof

Step Hyp Ref Expression
1 dihmeetlem9.b B = Base K
2 dihmeetlem9.l ˙ = K
3 dihmeetlem9.h H = LHyp K
4 dihmeetlem9.j ˙ = join K
5 dihmeetlem9.m ˙ = meet K
6 dihmeetlem9.a A = Atoms K
7 dihmeetlem9.u U = DVecH K W
8 dihmeetlem9.s ˙ = LSSum U
9 dihmeetlem9.i I = DIsoH K W
10 simpl1l K HL W H X B Y B p A ¬ p ˙ W p ˙ X K HL
11 simpl2 K HL W H X B Y B p A ¬ p ˙ W p ˙ X X B
12 simpl3 K HL W H X B Y B p A ¬ p ˙ W p ˙ X Y B
13 simprll K HL W H X B Y B p A ¬ p ˙ W p ˙ X p A
14 simprr K HL W H X B Y B p A ¬ p ˙ W p ˙ X p ˙ X
15 1 2 4 5 6 dihmeetlem5 K HL X B Y B p A p ˙ X X ˙ Y ˙ p = X ˙ Y ˙ p
16 10 11 12 13 14 15 syl32anc K HL W H X B Y B p A ¬ p ˙ W p ˙ X X ˙ Y ˙ p = X ˙ Y ˙ p
17 16 fveq2d K HL W H X B Y B p A ¬ p ˙ W p ˙ X I X ˙ Y ˙ p = I X ˙ Y ˙ p
18 simpl1 K HL W H X B Y B p A ¬ p ˙ W p ˙ X K HL W H
19 10 hllatd K HL W H X B Y B p A ¬ p ˙ W p ˙ X K Lat
20 1 6 atbase p A p B
21 13 20 syl K HL W H X B Y B p A ¬ p ˙ W p ˙ X p B
22 1 4 latjcl K Lat Y B p B Y ˙ p B
23 19 12 21 22 syl3anc K HL W H X B Y B p A ¬ p ˙ W p ˙ X Y ˙ p B
24 1 2 3 4 5 6 dihmeetlem6 K HL W H X B Y B p A ¬ p ˙ W p ˙ X ¬ X ˙ Y ˙ p ˙ W
25 1 2 5 3 9 dihmeetcN K HL W H X B Y ˙ p B ¬ X ˙ Y ˙ p ˙ W I X ˙ Y ˙ p = I X I Y ˙ p
26 18 11 23 24 25 syl121anc K HL W H X B Y B p A ¬ p ˙ W p ˙ X I X ˙ Y ˙ p = I X I Y ˙ p
27 17 26 eqtr3d K HL W H X B Y B p A ¬ p ˙ W p ˙ X I X ˙ Y ˙ p = I X I Y ˙ p