Step |
Hyp |
Ref |
Expression |
1 |
|
dihmeetc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihmeetc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihmeetc.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
dihmeetc.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
dihmeetc.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) |
7 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝐾 ∈ HL ) |
8 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝑋 ∈ 𝐵 ) |
9 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝑌 ∈ 𝐵 ) |
10 |
6 3 7 8 9
|
meetval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝑋 ∧ 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) |
11 |
10
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) ) |
12 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
prssi |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → { 𝑋 , 𝑌 } ⊆ 𝐵 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → { 𝑋 , 𝑌 } ⊆ 𝐵 ) |
15 |
|
prnzg |
⊢ ( 𝑋 ∈ 𝐵 → { 𝑋 , 𝑌 } ≠ ∅ ) |
16 |
8 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → { 𝑋 , 𝑌 } ≠ ∅ ) |
17 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
18 |
10
|
breq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ↔ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ≤ 𝑊 ) ) |
19 |
17 18
|
mtbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ¬ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ≤ 𝑊 ) |
20 |
1 6 4 5 2
|
dihglbcN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( { 𝑋 , 𝑌 } ⊆ 𝐵 ∧ { 𝑋 , 𝑌 } ≠ ∅ ) ∧ ¬ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ≤ 𝑊 ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) ) |
21 |
12 14 16 19 20
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑋 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑌 ) ) |
24 |
22 23
|
iinxprg |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
25 |
24
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ∩ 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼 ‘ 𝑥 ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |
26 |
11 21 25
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ¬ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ) |