Metamath Proof Explorer


Theorem dihmeetcN

Description: Isomorphism H of a lattice meet when the meet is not under the fiducial hyperplane W . (Contributed by NM, 26-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetc.b 𝐵 = ( Base ‘ 𝐾 )
dihmeetc.l = ( le ‘ 𝐾 )
dihmeetc.m = ( meet ‘ 𝐾 )
dihmeetc.h 𝐻 = ( LHyp ‘ 𝐾 )
dihmeetc.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dihmeetcN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 dihmeetc.b 𝐵 = ( Base ‘ 𝐾 )
2 dihmeetc.l = ( le ‘ 𝐾 )
3 dihmeetc.m = ( meet ‘ 𝐾 )
4 dihmeetc.h 𝐻 = ( LHyp ‘ 𝐾 )
5 dihmeetc.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 )
7 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → 𝐾 ∈ HL )
8 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → 𝑋𝐵 )
9 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → 𝑌𝐵 )
10 6 3 7 8 9 meetval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ( 𝑋 𝑌 ) = ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) )
11 10 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) )
12 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 prssi ( ( 𝑋𝐵𝑌𝐵 ) → { 𝑋 , 𝑌 } ⊆ 𝐵 )
14 13 3ad2ant2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → { 𝑋 , 𝑌 } ⊆ 𝐵 )
15 prnzg ( 𝑋𝐵 → { 𝑋 , 𝑌 } ≠ ∅ )
16 8 15 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → { 𝑋 , 𝑌 } ≠ ∅ )
17 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ¬ ( 𝑋 𝑌 ) 𝑊 )
18 10 breq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ( ( 𝑋 𝑌 ) 𝑊 ↔ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) 𝑊 ) )
19 17 18 mtbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ¬ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) 𝑊 )
20 1 6 4 5 2 dihglbcN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( { 𝑋 , 𝑌 } ⊆ 𝐵 ∧ { 𝑋 , 𝑌 } ≠ ∅ ) ∧ ¬ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) 𝑊 ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼𝑥 ) )
21 12 14 16 19 20 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ( 𝐼 ‘ ( ( glb ‘ 𝐾 ) ‘ { 𝑋 , 𝑌 } ) ) = 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼𝑥 ) )
22 fveq2 ( 𝑥 = 𝑋 → ( 𝐼𝑥 ) = ( 𝐼𝑋 ) )
23 fveq2 ( 𝑥 = 𝑌 → ( 𝐼𝑥 ) = ( 𝐼𝑌 ) )
24 22 23 iinxprg ( ( 𝑋𝐵𝑌𝐵 ) → 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼𝑥 ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
25 24 3ad2ant2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → 𝑥 ∈ { 𝑋 , 𝑌 } ( 𝐼𝑥 ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )
26 11 21 25 3eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑋 𝑌 ) 𝑊 ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ∩ ( 𝐼𝑌 ) ) )