| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dihjatc.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | dihjatc.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | dihjatc.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | dihjatc.j |  |-  .\/ = ( join ` K ) | 
						
							| 5 |  | dihjatc.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | dihjatc.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 7 |  | dihjatc.s |  |-  .(+) = ( LSSum ` U ) | 
						
							| 8 |  | dihjatc.i |  |-  I = ( ( DIsoH ` K ) ` W ) | 
						
							| 9 |  | dihjatc.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | dihjatc.x |  |-  ( ph -> ( X e. B /\ X .<_ W ) ) | 
						
							| 11 |  | dihjatc.p |  |-  ( ph -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 12 | 9 | simpld |  |-  ( ph -> K e. HL ) | 
						
							| 13 |  | hlop |  |-  ( K e. HL -> K e. OP ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> K e. OP ) | 
						
							| 15 |  | eqid |  |-  ( 1. ` K ) = ( 1. ` K ) | 
						
							| 16 | 1 15 | op1cl |  |-  ( K e. OP -> ( 1. ` K ) e. B ) | 
						
							| 17 | 14 16 | syl |  |-  ( ph -> ( 1. ` K ) e. B ) | 
						
							| 18 | 10 | simpld |  |-  ( ph -> X e. B ) | 
						
							| 19 | 11 | simpld |  |-  ( ph -> P e. A ) | 
						
							| 20 | 1 5 | atbase |  |-  ( P e. A -> P e. B ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> P e. B ) | 
						
							| 22 | 1 2 15 | ople1 |  |-  ( ( K e. OP /\ P e. B ) -> P .<_ ( 1. ` K ) ) | 
						
							| 23 | 14 21 22 | syl2anc |  |-  ( ph -> P .<_ ( 1. ` K ) ) | 
						
							| 24 |  | hlol |  |-  ( K e. HL -> K e. OL ) | 
						
							| 25 | 12 24 | syl |  |-  ( ph -> K e. OL ) | 
						
							| 26 |  | eqid |  |-  ( meet ` K ) = ( meet ` K ) | 
						
							| 27 | 1 26 15 | olm12 |  |-  ( ( K e. OL /\ X e. B ) -> ( ( 1. ` K ) ( meet ` K ) X ) = X ) | 
						
							| 28 | 25 18 27 | syl2anc |  |-  ( ph -> ( ( 1. ` K ) ( meet ` K ) X ) = X ) | 
						
							| 29 | 10 | simprd |  |-  ( ph -> X .<_ W ) | 
						
							| 30 | 28 29 | eqbrtrd |  |-  ( ph -> ( ( 1. ` K ) ( meet ` K ) X ) .<_ W ) | 
						
							| 31 | 1 2 3 4 26 5 6 7 8 | dihjatc3 |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( 1. ` K ) e. B /\ X e. B ) /\ ( P e. A /\ -. P .<_ W ) /\ ( P .<_ ( 1. ` K ) /\ ( ( 1. ` K ) ( meet ` K ) X ) .<_ W ) ) -> ( I ` ( ( ( 1. ` K ) ( meet ` K ) X ) .\/ P ) ) = ( ( I ` ( ( 1. ` K ) ( meet ` K ) X ) ) .(+) ( I ` P ) ) ) | 
						
							| 32 | 9 17 18 11 23 30 31 | syl312anc |  |-  ( ph -> ( I ` ( ( ( 1. ` K ) ( meet ` K ) X ) .\/ P ) ) = ( ( I ` ( ( 1. ` K ) ( meet ` K ) X ) ) .(+) ( I ` P ) ) ) | 
						
							| 33 | 28 | fvoveq1d |  |-  ( ph -> ( I ` ( ( ( 1. ` K ) ( meet ` K ) X ) .\/ P ) ) = ( I ` ( X .\/ P ) ) ) | 
						
							| 34 | 28 | fveq2d |  |-  ( ph -> ( I ` ( ( 1. ` K ) ( meet ` K ) X ) ) = ( I ` X ) ) | 
						
							| 35 | 34 | oveq1d |  |-  ( ph -> ( ( I ` ( ( 1. ` K ) ( meet ` K ) X ) ) .(+) ( I ` P ) ) = ( ( I ` X ) .(+) ( I ` P ) ) ) | 
						
							| 36 | 32 33 35 | 3eqtr3d |  |-  ( ph -> ( I ` ( X .\/ P ) ) = ( ( I ` X ) .(+) ( I ` P ) ) ) |