Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcc.l |
|- .<_ = ( le ` K ) |
2 |
|
dihjatcc.h |
|- H = ( LHyp ` K ) |
3 |
|
dihjatcc.j |
|- .\/ = ( join ` K ) |
4 |
|
dihjatcc.a |
|- A = ( Atoms ` K ) |
5 |
|
dihjatcc.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dihjatcc.s |
|- .(+) = ( LSSum ` U ) |
7 |
|
dihjatcc.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihjatcc.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dihjatcc.p |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
10 |
|
dihjatcc.q |
|- ( ph -> ( Q e. A /\ -. Q .<_ W ) ) |
11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
12 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
13 |
|
eqid |
|- ( ( P .\/ Q ) ( meet ` K ) W ) = ( ( P .\/ Q ) ( meet ` K ) W ) |
14 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
15 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
16 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
17 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
18 |
|
eqid |
|- ( iota_ d e. ( ( LTrn ` K ) ` W ) ( d ` ( ( oc ` K ) ` W ) ) = P ) = ( iota_ d e. ( ( LTrn ` K ) ` W ) ( d ` ( ( oc ` K ) ` W ) ) = P ) |
19 |
|
eqid |
|- ( iota_ d e. ( ( LTrn ` K ) ` W ) ( d ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ d e. ( ( LTrn ` K ) ` W ) ( d ` ( ( oc ` K ) ` W ) ) = Q ) |
20 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) |-> ( d e. ( ( LTrn ` K ) ` W ) |-> `' ( a ` d ) ) ) = ( a e. ( ( TEndo ` K ) ` W ) |-> ( d e. ( ( LTrn ` K ) ` W ) |-> `' ( a ` d ) ) ) |
21 |
|
eqid |
|- ( d e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( d e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
22 |
|
eqid |
|- ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( d e. ( ( LTrn ` K ) ` W ) |-> ( ( a ` d ) o. ( b ` d ) ) ) ) = ( a e. ( ( TEndo ` K ) ` W ) , b e. ( ( TEndo ` K ) ` W ) |-> ( d e. ( ( LTrn ` K ) ` W ) |-> ( ( a ` d ) o. ( b ` d ) ) ) ) |
23 |
11 1 2 3 12 4 5 6 7 13 8 9 10 14 15 16 17 18 19 20 21 22
|
dihjatcclem4 |
|- ( ph -> ( I ` ( ( P .\/ Q ) ( meet ` K ) W ) ) C_ ( ( I ` P ) .(+) ( I ` Q ) ) ) |
24 |
11 1 2 3 12 4 5 6 7 13 8 9 10 23
|
dihjatcclem2 |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( I ` P ) .(+) ( I ` Q ) ) ) |