Metamath Proof Explorer


Theorem dihjatcclem4

Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b 𝐵 = ( Base ‘ 𝐾 )
dihjatcclem.l = ( le ‘ 𝐾 )
dihjatcclem.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjatcclem.j = ( join ‘ 𝐾 )
dihjatcclem.m = ( meet ‘ 𝐾 )
dihjatcclem.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjatcclem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjatcclem.s = ( LSSum ‘ 𝑈 )
dihjatcclem.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihjatcclem.v 𝑉 = ( ( 𝑃 𝑄 ) 𝑊 )
dihjatcclem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihjatcclem.p ( 𝜑 → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
dihjatcclem.q ( 𝜑 → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
dihjatcc.w 𝐶 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
dihjatcc.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dihjatcc.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
dihjatcc.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dihjatcc.g 𝐺 = ( 𝑑𝑇 ( 𝑑𝐶 ) = 𝑃 )
dihjatcc.dd 𝐷 = ( 𝑑𝑇 ( 𝑑𝐶 ) = 𝑄 )
dihjatcc.n 𝑁 = ( 𝑎𝐸 ↦ ( 𝑑𝑇 ( 𝑎𝑑 ) ) )
dihjatcc.o 0 = ( 𝑑𝑇 ↦ ( I ↾ 𝐵 ) )
dihjatcc.d 𝐽 = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑑𝑇 ↦ ( ( 𝑎𝑑 ) ∘ ( 𝑏𝑑 ) ) ) )
Assertion dihjatcclem4 ( 𝜑 → ( 𝐼𝑉 ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dihjatcclem.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjatcclem.l = ( le ‘ 𝐾 )
3 dihjatcclem.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihjatcclem.j = ( join ‘ 𝐾 )
5 dihjatcclem.m = ( meet ‘ 𝐾 )
6 dihjatcclem.a 𝐴 = ( Atoms ‘ 𝐾 )
7 dihjatcclem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjatcclem.s = ( LSSum ‘ 𝑈 )
9 dihjatcclem.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjatcclem.v 𝑉 = ( ( 𝑃 𝑄 ) 𝑊 )
11 dihjatcclem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 dihjatcclem.p ( 𝜑 → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 dihjatcclem.q ( 𝜑 → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
14 dihjatcc.w 𝐶 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
15 dihjatcc.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
16 dihjatcc.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
17 dihjatcc.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
18 dihjatcc.g 𝐺 = ( 𝑑𝑇 ( 𝑑𝐶 ) = 𝑃 )
19 dihjatcc.dd 𝐷 = ( 𝑑𝑇 ( 𝑑𝐶 ) = 𝑄 )
20 dihjatcc.n 𝑁 = ( 𝑎𝐸 ↦ ( 𝑑𝑇 ( 𝑎𝑑 ) ) )
21 dihjatcc.o 0 = ( 𝑑𝑇 ↦ ( I ↾ 𝐵 ) )
22 dihjatcc.d 𝐽 = ( 𝑎𝐸 , 𝑏𝐸 ↦ ( 𝑑𝑇 ↦ ( ( 𝑎𝑑 ) ∘ ( 𝑏𝑑 ) ) ) )
23 3 9 dihvalrel ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → Rel ( 𝐼𝑉 ) )
24 11 23 syl ( 𝜑 → Rel ( 𝐼𝑉 ) )
25 11 adantr ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
26 2 6 3 14 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐶𝐴 ∧ ¬ 𝐶 𝑊 ) )
27 11 26 syl ( 𝜑 → ( 𝐶𝐴 ∧ ¬ 𝐶 𝑊 ) )
28 2 6 3 15 18 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐶𝐴 ∧ ¬ 𝐶 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐺𝑇 )
29 11 27 12 28 syl3anc ( 𝜑𝐺𝑇 )
30 2 6 3 15 19 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐶𝐴 ∧ ¬ 𝐶 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐷𝑇 )
31 11 27 13 30 syl3anc ( 𝜑𝐷𝑇 )
32 3 15 ltrncnv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝑇 ) → 𝐷𝑇 )
33 11 31 32 syl2anc ( 𝜑 𝐷𝑇 )
34 3 15 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺𝑇 𝐷𝑇 ) → ( 𝐺 𝐷 ) ∈ 𝑇 )
35 11 29 33 34 syl3anc ( 𝜑 → ( 𝐺 𝐷 ) ∈ 𝑇 )
36 35 adantr ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝐺 𝐷 ) ∈ 𝑇 )
37 simprll ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → 𝑓𝑇 )
38 simprlr ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝑅𝑓 ) 𝑉 )
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 dihjatcclem3 ( 𝜑 → ( 𝑅 ‘ ( 𝐺 𝐷 ) ) = 𝑉 )
40 39 adantr ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝑅 ‘ ( 𝐺 𝐷 ) ) = 𝑉 )
41 38 40 breqtrrd ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝑅𝑓 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) )
42 2 3 15 16 17 tendoex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐺 𝐷 ) ∈ 𝑇𝑓𝑇 ) ∧ ( 𝑅𝑓 ) ( 𝑅 ‘ ( 𝐺 𝐷 ) ) ) → ∃ 𝑡𝐸 ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 )
43 25 36 37 41 42 syl121anc ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ∃ 𝑡𝐸 ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 )
44 df-rex ( ∃ 𝑡𝐸 ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ↔ ∃ 𝑡 ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) )
45 43 44 sylib ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ∃ 𝑡 ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) )
46 eqidd ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑡𝐺 ) = ( 𝑡𝐺 ) )
47 simprl ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → 𝑡𝐸 )
48 11 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
49 12 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
50 fvex ( 𝑡𝐺 ) ∈ V
51 vex 𝑡 ∈ V
52 2 6 3 14 15 17 9 18 50 51 dihopelvalcqat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ↔ ( ( 𝑡𝐺 ) = ( 𝑡𝐺 ) ∧ 𝑡𝐸 ) ) )
53 48 49 52 syl2anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ↔ ( ( 𝑡𝐺 ) = ( 𝑡𝐺 ) ∧ 𝑡𝐸 ) ) )
54 46 47 53 mpbir2and ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) )
55 eqidd ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( ( 𝑁𝑡 ) ‘ 𝐷 ) = ( ( 𝑁𝑡 ) ‘ 𝐷 ) )
56 3 15 17 20 tendoicl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑡𝐸 ) → ( 𝑁𝑡 ) ∈ 𝐸 )
57 48 47 56 syl2anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑁𝑡 ) ∈ 𝐸 )
58 13 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
59 fvex ( ( 𝑁𝑡 ) ‘ 𝐷 ) ∈ V
60 fvex ( 𝑁𝑡 ) ∈ V
61 2 6 3 14 15 17 9 19 59 60 dihopelvalcqat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ↔ ( ( ( 𝑁𝑡 ) ‘ 𝐷 ) = ( ( 𝑁𝑡 ) ‘ 𝐷 ) ∧ ( 𝑁𝑡 ) ∈ 𝐸 ) ) )
62 48 58 61 syl2anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ↔ ( ( ( 𝑁𝑡 ) ‘ 𝐷 ) = ( ( 𝑁𝑡 ) ‘ 𝐷 ) ∧ ( 𝑁𝑡 ) ∈ 𝐸 ) ) )
63 55 57 62 mpbir2and ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) )
64 29 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → 𝐺𝑇 )
65 33 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → 𝐷𝑇 )
66 3 15 17 tendospdi1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑡𝐸𝐺𝑇 𝐷𝑇 ) ) → ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = ( ( 𝑡𝐺 ) ∘ ( 𝑡 𝐷 ) ) )
67 48 47 64 65 66 syl13anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = ( ( 𝑡𝐺 ) ∘ ( 𝑡 𝐷 ) ) )
68 simprr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 )
69 31 ad2antrr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → 𝐷𝑇 )
70 20 15 tendoi2 ( ( 𝑡𝐸𝐷𝑇 ) → ( ( 𝑁𝑡 ) ‘ 𝐷 ) = ( 𝑡𝐷 ) )
71 47 69 70 syl2anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( ( 𝑁𝑡 ) ‘ 𝐷 ) = ( 𝑡𝐷 ) )
72 3 15 17 tendocnv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑡𝐸𝐷𝑇 ) → ( 𝑡𝐷 ) = ( 𝑡 𝐷 ) )
73 48 47 69 72 syl3anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑡𝐷 ) = ( 𝑡 𝐷 ) )
74 71 73 eqtr2d ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 𝐷 ) = ( ( 𝑁𝑡 ) ‘ 𝐷 ) )
75 74 coeq2d ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( ( 𝑡𝐺 ) ∘ ( 𝑡 𝐷 ) ) = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) )
76 67 68 75 3eqtr3d ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) )
77 simplrr ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → 𝑠 = 0 )
78 3 15 17 20 1 22 21 tendoipl2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑡𝐸 ) → ( 𝑡 𝐽 ( 𝑁𝑡 ) ) = 0 )
79 48 47 78 syl2anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 𝐽 ( 𝑁𝑡 ) ) = 0 )
80 77 79 eqtr4d ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → 𝑠 = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) )
81 opeq1 ( 𝑔 = ( 𝑡𝐺 ) → ⟨ 𝑔 , 𝑡 ⟩ = ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ )
82 81 eleq1d ( 𝑔 = ( 𝑡𝐺 ) → ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ↔ ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ) )
83 82 anbi1d ( 𝑔 = ( 𝑡𝐺 ) → ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ↔ ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ) )
84 coeq1 ( 𝑔 = ( 𝑡𝐺 ) → ( 𝑔 ) = ( ( 𝑡𝐺 ) ∘ ) )
85 84 eqeq2d ( 𝑔 = ( 𝑡𝐺 ) → ( 𝑓 = ( 𝑔 ) ↔ 𝑓 = ( ( 𝑡𝐺 ) ∘ ) ) )
86 85 anbi1d ( 𝑔 = ( 𝑡𝐺 ) → ( ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ↔ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) )
87 83 86 anbi12d ( 𝑔 = ( 𝑡𝐺 ) → ( ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
88 opeq1 ( = ( ( 𝑁𝑡 ) ‘ 𝐷 ) → ⟨ , 𝑢 ⟩ = ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ )
89 88 eleq1d ( = ( ( 𝑁𝑡 ) ‘ 𝐷 ) → ( ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ↔ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) )
90 89 anbi2d ( = ( ( 𝑁𝑡 ) ‘ 𝐷 ) → ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ↔ ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ) )
91 coeq2 ( = ( ( 𝑁𝑡 ) ‘ 𝐷 ) → ( ( 𝑡𝐺 ) ∘ ) = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) )
92 91 eqeq2d ( = ( ( 𝑁𝑡 ) ‘ 𝐷 ) → ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ) ↔ 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ) )
93 92 anbi1d ( = ( ( 𝑁𝑡 ) ‘ 𝐷 ) → ( ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ↔ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) )
94 90 93 anbi12d ( = ( ( 𝑁𝑡 ) ‘ 𝐷 ) → ( ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
95 opeq2 ( 𝑢 = ( 𝑁𝑡 ) → ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ = ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ )
96 95 eleq1d ( 𝑢 = ( 𝑁𝑡 ) → ( ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ↔ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ) )
97 96 anbi2d ( 𝑢 = ( 𝑁𝑡 ) → ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ↔ ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ) ) )
98 oveq2 ( 𝑢 = ( 𝑁𝑡 ) → ( 𝑡 𝐽 𝑢 ) = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) )
99 98 eqeq2d ( 𝑢 = ( 𝑁𝑡 ) → ( 𝑠 = ( 𝑡 𝐽 𝑢 ) ↔ 𝑠 = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) ) )
100 99 anbi2d ( 𝑢 = ( 𝑁𝑡 ) → ( ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ↔ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) ) ) )
101 97 100 anbi12d ( 𝑢 = ( 𝑁𝑡 ) → ( ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) ) ) ) )
102 87 94 101 syl3an9b ( ( 𝑔 = ( 𝑡𝐺 ) ∧ = ( ( 𝑁𝑡 ) ‘ 𝐷 ) ∧ 𝑢 = ( 𝑁𝑡 ) ) → ( ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) ) ) ) )
103 102 spc3egv ( ( ( 𝑡𝐺 ) ∈ V ∧ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ∈ V ∧ ( 𝑁𝑡 ) ∈ V ) → ( ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) ) ) → ∃ 𝑔𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
104 50 59 60 103 mp3an ( ( ( ⟨ ( 𝑡𝐺 ) , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ ( ( 𝑁𝑡 ) ‘ 𝐷 ) , ( 𝑁𝑡 ) ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡𝐺 ) ∘ ( ( 𝑁𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁𝑡 ) ) ) ) → ∃ 𝑔𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) )
105 54 63 76 80 104 syl22anc ( ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) ) → ∃ 𝑔𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) )
106 105 ex ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) → ∃ 𝑔𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
107 106 eximdv ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( ∃ 𝑡 ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) → ∃ 𝑡𝑔𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
108 excom ( ∃ 𝑡𝑔𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ∃ 𝑔𝑡𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) )
109 107 108 syl6ib ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ( ∃ 𝑡 ( 𝑡𝐸 ∧ ( 𝑡 ‘ ( 𝐺 𝐷 ) ) = 𝑓 ) → ∃ 𝑔𝑡𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
110 45 109 mpd ( ( 𝜑 ∧ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) → ∃ 𝑔𝑡𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) )
111 110 ex ( 𝜑 → ( ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) → ∃ 𝑔𝑡𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
112 11 simpld ( 𝜑𝐾 ∈ HL )
113 112 hllatd ( 𝜑𝐾 ∈ Lat )
114 12 simpld ( 𝜑𝑃𝐴 )
115 13 simpld ( 𝜑𝑄𝐴 )
116 1 4 6 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
117 112 114 115 116 syl3anc ( 𝜑 → ( 𝑃 𝑄 ) ∈ 𝐵 )
118 11 simprd ( 𝜑𝑊𝐻 )
119 1 3 lhpbase ( 𝑊𝐻𝑊𝐵 )
120 118 119 syl ( 𝜑𝑊𝐵 )
121 1 5 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐵 )
122 113 117 120 121 syl3anc ( 𝜑 → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐵 )
123 10 122 eqeltrid ( 𝜑𝑉𝐵 )
124 1 2 5 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
125 113 117 120 124 syl3anc ( 𝜑 → ( ( 𝑃 𝑄 ) 𝑊 ) 𝑊 )
126 10 125 eqbrtrid ( 𝜑𝑉 𝑊 )
127 eqid ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
128 1 2 3 9 127 dihvalb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑉𝐵𝑉 𝑊 ) ) → ( 𝐼𝑉 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) )
129 11 123 126 128 syl12anc ( 𝜑 → ( 𝐼𝑉 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) )
130 129 eleq2d ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑉 ) ↔ ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ) )
131 1 2 3 15 16 21 127 dibopelval3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑉𝐵𝑉 𝑊 ) ) → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) )
132 11 123 126 131 syl12anc ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) )
133 130 132 bitrd ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑉 ) ↔ ( ( 𝑓𝑇 ∧ ( 𝑅𝑓 ) 𝑉 ) ∧ 𝑠 = 0 ) ) )
134 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
135 1 6 atbase ( 𝑃𝐴𝑃𝐵 )
136 114 135 syl ( 𝜑𝑃𝐵 )
137 1 6 atbase ( 𝑄𝐴𝑄𝐵 )
138 115 137 syl ( 𝜑𝑄𝐵 )
139 1 3 15 17 22 7 134 8 9 11 136 138 dihopellsm ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ↔ ∃ 𝑔𝑡𝑢 ( ( ⟨ 𝑔 , 𝑡 ⟩ ∈ ( 𝐼𝑃 ) ∧ ⟨ , 𝑢 ⟩ ∈ ( 𝐼𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) )
140 111 133 139 3imtr4d ( 𝜑 → ( ⟨ 𝑓 , 𝑠 ⟩ ∈ ( 𝐼𝑉 ) → ⟨ 𝑓 , 𝑠 ⟩ ∈ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ) )
141 24 140 relssdv ( 𝜑 → ( 𝐼𝑉 ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )