Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatcclem.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dihjatcclem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
dihjatcclem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
dihjatcclem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
5 |
|
dihjatcclem.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
6 |
|
dihjatcclem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
dihjatcclem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
dihjatcclem.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
9 |
|
dihjatcclem.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
dihjatcclem.v |
⊢ 𝑉 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
11 |
|
dihjatcclem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
dihjatcclem.p |
⊢ ( 𝜑 → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
|
dihjatcclem.q |
⊢ ( 𝜑 → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
14 |
|
dihjatcc.w |
⊢ 𝐶 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
dihjatcc.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
dihjatcc.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
dihjatcc.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
dihjatcc.g |
⊢ 𝐺 = ( ℩ 𝑑 ∈ 𝑇 ( 𝑑 ‘ 𝐶 ) = 𝑃 ) |
19 |
|
dihjatcc.dd |
⊢ 𝐷 = ( ℩ 𝑑 ∈ 𝑇 ( 𝑑 ‘ 𝐶 ) = 𝑄 ) |
20 |
|
dihjatcc.n |
⊢ 𝑁 = ( 𝑎 ∈ 𝐸 ↦ ( 𝑑 ∈ 𝑇 ↦ ◡ ( 𝑎 ‘ 𝑑 ) ) ) |
21 |
|
dihjatcc.o |
⊢ 0 = ( 𝑑 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
22 |
|
dihjatcc.d |
⊢ 𝐽 = ( 𝑎 ∈ 𝐸 , 𝑏 ∈ 𝐸 ↦ ( 𝑑 ∈ 𝑇 ↦ ( ( 𝑎 ‘ 𝑑 ) ∘ ( 𝑏 ‘ 𝑑 ) ) ) ) |
23 |
3 9
|
dihvalrel |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → Rel ( 𝐼 ‘ 𝑉 ) ) |
24 |
11 23
|
syl |
⊢ ( 𝜑 → Rel ( 𝐼 ‘ 𝑉 ) ) |
25 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
2 6 3 14
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊 ) ) |
27 |
11 26
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊 ) ) |
28 |
2 6 3 15 18
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
29 |
11 27 12 28
|
syl3anc |
⊢ ( 𝜑 → 𝐺 ∈ 𝑇 ) |
30 |
2 6 3 15 19
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐶 ∈ 𝐴 ∧ ¬ 𝐶 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐷 ∈ 𝑇 ) |
31 |
11 27 13 30
|
syl3anc |
⊢ ( 𝜑 → 𝐷 ∈ 𝑇 ) |
32 |
3 15
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐷 ∈ 𝑇 ) → ◡ 𝐷 ∈ 𝑇 ) |
33 |
11 31 32
|
syl2anc |
⊢ ( 𝜑 → ◡ 𝐷 ∈ 𝑇 ) |
34 |
3 15
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐷 ∈ 𝑇 ) → ( 𝐺 ∘ ◡ 𝐷 ) ∈ 𝑇 ) |
35 |
11 29 33 34
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ∘ ◡ 𝐷 ) ∈ 𝑇 ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝐺 ∘ ◡ 𝐷 ) ∈ 𝑇 ) |
37 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → 𝑓 ∈ 𝑇 ) |
38 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) |
39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
dihjatcclem3 |
⊢ ( 𝜑 → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑉 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑉 ) |
41 |
38 40
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) |
42 |
2 3 15 16 17
|
tendoex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐺 ∘ ◡ 𝐷 ) ∈ 𝑇 ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑓 ) ≤ ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) ) → ∃ 𝑡 ∈ 𝐸 ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) |
43 |
25 36 37 41 42
|
syl121anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ∃ 𝑡 ∈ 𝐸 ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) |
44 |
|
df-rex |
⊢ ( ∃ 𝑡 ∈ 𝐸 ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ↔ ∃ 𝑡 ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) |
45 |
43 44
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ∃ 𝑡 ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) |
46 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 ‘ 𝐺 ) = ( 𝑡 ‘ 𝐺 ) ) |
47 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 𝑡 ∈ 𝐸 ) |
48 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
49 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
50 |
|
fvex |
⊢ ( 𝑡 ‘ 𝐺 ) ∈ V |
51 |
|
vex |
⊢ 𝑡 ∈ V |
52 |
2 6 3 14 15 17 9 18 50 51
|
dihopelvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ↔ ( ( 𝑡 ‘ 𝐺 ) = ( 𝑡 ‘ 𝐺 ) ∧ 𝑡 ∈ 𝐸 ) ) ) |
53 |
48 49 52
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ↔ ( ( 𝑡 ‘ 𝐺 ) = ( 𝑡 ‘ 𝐺 ) ∧ 𝑡 ∈ 𝐸 ) ) ) |
54 |
46 47 53
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ) |
55 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) |
56 |
3 15 17 20
|
tendoicl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝑁 ‘ 𝑡 ) ∈ 𝐸 ) |
57 |
48 47 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑁 ‘ 𝑡 ) ∈ 𝐸 ) |
58 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
59 |
|
fvex |
⊢ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ∈ V |
60 |
|
fvex |
⊢ ( 𝑁 ‘ 𝑡 ) ∈ V |
61 |
2 6 3 14 15 17 9 19 59 60
|
dihopelvalcqat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ ( ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ∧ ( 𝑁 ‘ 𝑡 ) ∈ 𝐸 ) ) ) |
62 |
48 58 61
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ ( ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ∧ ( 𝑁 ‘ 𝑡 ) ∈ 𝐸 ) ) ) |
63 |
55 57 62
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) |
64 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 𝐺 ∈ 𝑇 ) |
65 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ◡ 𝐷 ∈ 𝑇 ) |
66 |
3 15 17
|
tendospdi1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑡 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇 ∧ ◡ 𝐷 ∈ 𝑇 ) ) → ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = ( ( 𝑡 ‘ 𝐺 ) ∘ ( 𝑡 ‘ ◡ 𝐷 ) ) ) |
67 |
48 47 64 65 66
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = ( ( 𝑡 ‘ 𝐺 ) ∘ ( 𝑡 ‘ ◡ 𝐷 ) ) ) |
68 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) |
69 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 𝐷 ∈ 𝑇 ) |
70 |
20 15
|
tendoi2 |
⊢ ( ( 𝑡 ∈ 𝐸 ∧ 𝐷 ∈ 𝑇 ) → ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) = ◡ ( 𝑡 ‘ 𝐷 ) ) |
71 |
47 69 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) = ◡ ( 𝑡 ‘ 𝐷 ) ) |
72 |
3 15 17
|
tendocnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ∧ 𝐷 ∈ 𝑇 ) → ◡ ( 𝑡 ‘ 𝐷 ) = ( 𝑡 ‘ ◡ 𝐷 ) ) |
73 |
48 47 69 72
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ◡ ( 𝑡 ‘ 𝐷 ) = ( 𝑡 ‘ ◡ 𝐷 ) ) |
74 |
71 73
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 ‘ ◡ 𝐷 ) = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) |
75 |
74
|
coeq2d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( ( 𝑡 ‘ 𝐺 ) ∘ ( 𝑡 ‘ ◡ 𝐷 ) ) = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ) |
76 |
67 68 75
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ) |
77 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 𝑠 = 0 ) |
78 |
3 15 17 20 1 22 21
|
tendoipl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑡 ∈ 𝐸 ) → ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) = 0 ) |
79 |
48 47 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) = 0 ) |
80 |
77 79
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → 𝑠 = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) |
81 |
|
opeq1 |
⊢ ( 𝑔 = ( 𝑡 ‘ 𝐺 ) → 〈 𝑔 , 𝑡 〉 = 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ) |
82 |
81
|
eleq1d |
⊢ ( 𝑔 = ( 𝑡 ‘ 𝐺 ) → ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ↔ 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ) ) |
83 |
82
|
anbi1d |
⊢ ( 𝑔 = ( 𝑡 ‘ 𝐺 ) → ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ↔ ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ) ) |
84 |
|
coeq1 |
⊢ ( 𝑔 = ( 𝑡 ‘ 𝐺 ) → ( 𝑔 ∘ ℎ ) = ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) ) |
85 |
84
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑡 ‘ 𝐺 ) → ( 𝑓 = ( 𝑔 ∘ ℎ ) ↔ 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) ) ) |
86 |
85
|
anbi1d |
⊢ ( 𝑔 = ( 𝑡 ‘ 𝐺 ) → ( ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ↔ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) |
87 |
83 86
|
anbi12d |
⊢ ( 𝑔 = ( 𝑡 ‘ 𝐺 ) → ( ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
88 |
|
opeq1 |
⊢ ( ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) → 〈 ℎ , 𝑢 〉 = 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 ) |
89 |
88
|
eleq1d |
⊢ ( ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) → ( 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ) |
90 |
89
|
anbi2d |
⊢ ( ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) → ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ↔ ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ) ) |
91 |
|
coeq2 |
⊢ ( ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) → ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ) |
92 |
91
|
eqeq2d |
⊢ ( ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) → ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) ↔ 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ) ) |
93 |
92
|
anbi1d |
⊢ ( ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) → ( ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ↔ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) |
94 |
90 93
|
anbi12d |
⊢ ( ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) → ( ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
95 |
|
opeq2 |
⊢ ( 𝑢 = ( 𝑁 ‘ 𝑡 ) → 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 = 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ) |
96 |
95
|
eleq1d |
⊢ ( 𝑢 = ( 𝑁 ‘ 𝑡 ) → ( 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ) |
97 |
96
|
anbi2d |
⊢ ( 𝑢 = ( 𝑁 ‘ 𝑡 ) → ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ↔ ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ) ) |
98 |
|
oveq2 |
⊢ ( 𝑢 = ( 𝑁 ‘ 𝑡 ) → ( 𝑡 𝐽 𝑢 ) = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) |
99 |
98
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑁 ‘ 𝑡 ) → ( 𝑠 = ( 𝑡 𝐽 𝑢 ) ↔ 𝑠 = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) ) |
100 |
99
|
anbi2d |
⊢ ( 𝑢 = ( 𝑁 ‘ 𝑡 ) → ( ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ↔ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) ) ) |
101 |
97 100
|
anbi12d |
⊢ ( 𝑢 = ( 𝑁 ‘ 𝑡 ) → ( ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) ) ) ) |
102 |
87 94 101
|
syl3an9b |
⊢ ( ( 𝑔 = ( 𝑡 ‘ 𝐺 ) ∧ ℎ = ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ∧ 𝑢 = ( 𝑁 ‘ 𝑡 ) ) → ( ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) ) ) ) |
103 |
102
|
spc3egv |
⊢ ( ( ( 𝑡 ‘ 𝐺 ) ∈ V ∧ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ∈ V ∧ ( 𝑁 ‘ 𝑡 ) ∈ V ) → ( ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) ) → ∃ 𝑔 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
104 |
50 59 60 103
|
mp3an |
⊢ ( ( ( 〈 ( 𝑡 ‘ 𝐺 ) , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) , ( 𝑁 ‘ 𝑡 ) 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( ( 𝑡 ‘ 𝐺 ) ∘ ( ( 𝑁 ‘ 𝑡 ) ‘ 𝐷 ) ) ∧ 𝑠 = ( 𝑡 𝐽 ( 𝑁 ‘ 𝑡 ) ) ) ) → ∃ 𝑔 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) |
105 |
54 63 76 80 104
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ∧ ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) ) → ∃ 𝑔 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) |
106 |
105
|
ex |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) → ∃ 𝑔 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
107 |
106
|
eximdv |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( ∃ 𝑡 ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) → ∃ 𝑡 ∃ 𝑔 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
108 |
|
excom |
⊢ ( ∃ 𝑡 ∃ 𝑔 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ↔ ∃ 𝑔 ∃ 𝑡 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) |
109 |
107 108
|
syl6ib |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ( ∃ 𝑡 ( 𝑡 ∈ 𝐸 ∧ ( 𝑡 ‘ ( 𝐺 ∘ ◡ 𝐷 ) ) = 𝑓 ) → ∃ 𝑔 ∃ 𝑡 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
110 |
45 109
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) → ∃ 𝑔 ∃ 𝑡 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) |
111 |
110
|
ex |
⊢ ( 𝜑 → ( ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) → ∃ 𝑔 ∃ 𝑡 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
112 |
11
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
113 |
112
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
114 |
12
|
simpld |
⊢ ( 𝜑 → 𝑃 ∈ 𝐴 ) |
115 |
13
|
simpld |
⊢ ( 𝜑 → 𝑄 ∈ 𝐴 ) |
116 |
1 4 6
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
117 |
112 114 115 116
|
syl3anc |
⊢ ( 𝜑 → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
118 |
11
|
simprd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐻 ) |
119 |
1 3
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
120 |
118 119
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
121 |
1 5
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐵 ) |
122 |
113 117 120 121
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ 𝐵 ) |
123 |
10 122
|
eqeltrid |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
124 |
1 2 5
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
125 |
113 117 120 124
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
126 |
10 125
|
eqbrtrid |
⊢ ( 𝜑 → 𝑉 ≤ 𝑊 ) |
127 |
|
eqid |
⊢ ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
128 |
1 2 3 9 127
|
dihvalb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑉 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ) |
129 |
11 123 126 128
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑉 ) = ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ) |
130 |
129
|
eleq2d |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑉 ) ↔ 〈 𝑓 , 𝑠 〉 ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ) ) |
131 |
1 2 3 15 16 21 127
|
dibopelval3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑉 ∈ 𝐵 ∧ 𝑉 ≤ 𝑊 ) ) → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ) |
132 |
11 123 126 131
|
syl12anc |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑉 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ) |
133 |
130 132
|
bitrd |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑉 ) ↔ ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝑓 ) ≤ 𝑉 ) ∧ 𝑠 = 0 ) ) ) |
134 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
135 |
1 6
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
136 |
114 135
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
137 |
1 6
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
138 |
115 137
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
139 |
1 3 15 17 22 7 134 8 9 11 136 138
|
dihopellsm |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ↔ ∃ 𝑔 ∃ 𝑡 ∃ ℎ ∃ 𝑢 ( ( 〈 𝑔 , 𝑡 〉 ∈ ( 𝐼 ‘ 𝑃 ) ∧ 〈 ℎ , 𝑢 〉 ∈ ( 𝐼 ‘ 𝑄 ) ) ∧ ( 𝑓 = ( 𝑔 ∘ ℎ ) ∧ 𝑠 = ( 𝑡 𝐽 𝑢 ) ) ) ) ) |
140 |
111 133 139
|
3imtr4d |
⊢ ( 𝜑 → ( 〈 𝑓 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑉 ) → 〈 𝑓 , 𝑠 〉 ∈ ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) ) |
141 |
24 140
|
relssdv |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑉 ) ⊆ ( ( 𝐼 ‘ 𝑃 ) ⊕ ( 𝐼 ‘ 𝑄 ) ) ) |