| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoicl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
tendoicl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
tendoicl.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
tendoicl.i |
⊢ 𝐼 = ( 𝑠 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑠 ‘ 𝑓 ) ) ) |
| 5 |
|
tendoi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 6 |
|
tendoi.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
| 7 |
|
tendoi.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 8 |
1 2 3 4
|
tendoicl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ) |
| 9 |
1 2 3 6
|
tendoplcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ) → ( 𝑆 𝑃 ( 𝐼 ‘ 𝑆 ) ) = ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ) |
| 10 |
8 9
|
mpd3an3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝑆 𝑃 ( 𝐼 ‘ 𝑆 ) ) = ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ) |
| 11 |
1 2 3 4 5 6 7
|
tendoipl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) = 𝑂 ) |
| 12 |
10 11
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝑆 𝑃 ( 𝐼 ‘ 𝑆 ) ) = 𝑂 ) |