Metamath Proof Explorer


Theorem tendoipl2

Description: Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses tendoicl.h 𝐻 = ( LHyp ‘ 𝐾 )
tendoicl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendoicl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
tendoicl.i 𝐼 = ( 𝑠𝐸 ↦ ( 𝑓𝑇 ( 𝑠𝑓 ) ) )
tendoi.b 𝐵 = ( Base ‘ 𝐾 )
tendoi.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
tendoi.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
Assertion tendoipl2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸 ) → ( 𝑆 𝑃 ( 𝐼𝑆 ) ) = 𝑂 )

Proof

Step Hyp Ref Expression
1 tendoicl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendoicl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendoicl.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 tendoicl.i 𝐼 = ( 𝑠𝐸 ↦ ( 𝑓𝑇 ( 𝑠𝑓 ) ) )
5 tendoi.b 𝐵 = ( Base ‘ 𝐾 )
6 tendoi.p 𝑃 = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
7 tendoi.o 𝑂 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
8 1 2 3 4 tendoicl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸 ) → ( 𝐼𝑆 ) ∈ 𝐸 )
9 1 2 3 6 tendoplcom ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸 ∧ ( 𝐼𝑆 ) ∈ 𝐸 ) → ( 𝑆 𝑃 ( 𝐼𝑆 ) ) = ( ( 𝐼𝑆 ) 𝑃 𝑆 ) )
10 8 9 mpd3an3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸 ) → ( 𝑆 𝑃 ( 𝐼𝑆 ) ) = ( ( 𝐼𝑆 ) 𝑃 𝑆 ) )
11 1 2 3 4 5 6 7 tendoipl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸 ) → ( ( 𝐼𝑆 ) 𝑃 𝑆 ) = 𝑂 )
12 10 11 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑆𝐸 ) → ( 𝑆 𝑃 ( 𝐼𝑆 ) ) = 𝑂 )