| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoicl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
tendoicl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
tendoicl.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
tendoicl.i |
⊢ 𝐼 = ( 𝑠 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑠 ‘ 𝑓 ) ) ) |
| 5 |
|
tendoi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 6 |
|
tendoi.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
| 7 |
|
tendoi.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
| 8 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
1 2 3 4
|
tendoicl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ) |
| 10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → 𝑆 ∈ 𝐸 ) |
| 11 |
1 2 3 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ∈ 𝐸 ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ∈ 𝐸 ) |
| 13 |
5 1 2 3 7
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → 𝑂 ∈ 𝐸 ) |
| 15 |
4 2
|
tendoi2 |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
| 16 |
15
|
adantll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
| 17 |
16
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
| 18 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 19 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
| 20 |
19
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
| 21 |
5 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 22 |
18 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 23 |
|
f1ococnv1 |
⊢ ( ( 𝑆 ‘ 𝑔 ) : 𝐵 –1-1-onto→ 𝐵 → ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( I ↾ 𝐵 ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( I ↾ 𝐵 ) ) |
| 25 |
17 24
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( I ↾ 𝐵 ) ) |
| 26 |
9
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ) |
| 27 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → 𝑆 ∈ 𝐸 ) |
| 28 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ 𝑇 ) |
| 29 |
6 2
|
tendopl2 |
⊢ ( ( ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
| 30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
| 31 |
7 5
|
tendo02 |
⊢ ( 𝑔 ∈ 𝑇 → ( 𝑂 ‘ 𝑔 ) = ( I ↾ 𝐵 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑂 ‘ 𝑔 ) = ( I ↾ 𝐵 ) ) |
| 33 |
25 30 32
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) |
| 34 |
33
|
ralrimiva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ∀ 𝑔 ∈ 𝑇 ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) |
| 35 |
1 2 3
|
tendoeq1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ) ∧ ∀ 𝑔 ∈ 𝑇 ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) = 𝑂 ) |
| 36 |
8 12 14 34 35
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) = 𝑂 ) |