Step |
Hyp |
Ref |
Expression |
1 |
|
tendoicl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendoicl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendoicl.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoicl.i |
⊢ 𝐼 = ( 𝑠 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑠 ‘ 𝑓 ) ) ) |
5 |
|
tendoi.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
6 |
|
tendoi.p |
⊢ 𝑃 = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
7 |
|
tendoi.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
1 2 3 4
|
tendoicl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ) |
10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → 𝑆 ∈ 𝐸 ) |
11 |
1 2 3 6
|
tendoplcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ∈ 𝐸 ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ∈ 𝐸 ) |
13 |
5 1 2 3 7
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → 𝑂 ∈ 𝐸 ) |
15 |
4 2
|
tendoi2 |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
16 |
15
|
adantll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
17 |
16
|
coeq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
18 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
20 |
19
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
21 |
5 1 2
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) : 𝐵 –1-1-onto→ 𝐵 ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) : 𝐵 –1-1-onto→ 𝐵 ) |
23 |
|
f1ococnv1 |
⊢ ( ( 𝑆 ‘ 𝑔 ) : 𝐵 –1-1-onto→ 𝐵 → ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( I ↾ 𝐵 ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( I ↾ 𝐵 ) ) |
25 |
17 24
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( I ↾ 𝐵 ) ) |
26 |
9
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ) |
27 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → 𝑆 ∈ 𝐸 ) |
28 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → 𝑔 ∈ 𝑇 ) |
29 |
6 2
|
tendopl2 |
⊢ ( ( ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
31 |
7 5
|
tendo02 |
⊢ ( 𝑔 ∈ 𝑇 → ( 𝑂 ‘ 𝑔 ) = ( I ↾ 𝐵 ) ) |
32 |
31
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑂 ‘ 𝑔 ) = ( I ↾ 𝐵 ) ) |
33 |
25 30 32
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) |
34 |
33
|
ralrimiva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ∀ 𝑔 ∈ 𝑇 ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) |
35 |
1 2 3
|
tendoeq1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ∈ 𝐸 ∧ 𝑂 ∈ 𝐸 ) ∧ ∀ 𝑔 ∈ 𝑇 ( ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) ‘ 𝑔 ) = ( 𝑂 ‘ 𝑔 ) ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) = 𝑂 ) |
36 |
8 12 14 34 35
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) 𝑃 𝑆 ) = 𝑂 ) |