Step |
Hyp |
Ref |
Expression |
1 |
|
tendoicl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendoicl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendoicl.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoicl.i |
⊢ 𝐼 = ( 𝑠 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑠 ‘ 𝑓 ) ) ) |
5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
1 2 3
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
10 |
9
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
11 |
1 2
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) |
13 |
12
|
fmpttd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) : 𝑇 ⟶ 𝑇 ) |
14 |
4 2
|
tendoi |
⊢ ( 𝑆 ∈ 𝐸 → ( 𝐼 ‘ 𝑆 ) = ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐼 ‘ 𝑆 ) = ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |
16 |
15
|
feq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( ( 𝐼 ‘ 𝑆 ) : 𝑇 ⟶ 𝑇 ↔ ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) : 𝑇 ⟶ 𝑇 ) ) |
17 |
13 16
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐼 ‘ 𝑆 ) : 𝑇 ⟶ 𝑇 ) |
18 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → 𝑆 ∈ 𝐸 ) |
19 |
1 2
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑔 ∘ ℎ ) ∈ 𝑇 ) |
20 |
19
|
3adant1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑔 ∘ ℎ ) ∈ 𝑇 ) |
21 |
4 2
|
tendoi2 |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ ( 𝑔 ∘ ℎ ) ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ ( 𝑔 ∘ ℎ ) ) = ◡ ( 𝑆 ‘ ( 𝑔 ∘ ℎ ) ) ) |
22 |
18 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ ( 𝑔 ∘ ℎ ) ) = ◡ ( 𝑆 ‘ ( 𝑔 ∘ ℎ ) ) ) |
23 |
|
cnvco |
⊢ ◡ ( ( 𝑆 ‘ ℎ ) ∘ ( 𝑆 ‘ 𝑔 ) ) = ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ◡ ( 𝑆 ‘ ℎ ) ) |
24 |
1 2
|
ltrncom |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑔 ∘ ℎ ) = ( ℎ ∘ 𝑔 ) ) |
25 |
24
|
3adant1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑔 ∘ ℎ ) = ( ℎ ∘ 𝑔 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑆 ‘ ( 𝑔 ∘ ℎ ) ) = ( 𝑆 ‘ ( ℎ ∘ 𝑔 ) ) ) |
27 |
|
simp1ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → 𝐾 ∈ HL ) |
28 |
|
simp1lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → 𝑊 ∈ 𝐻 ) |
29 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ℎ ∈ 𝑇 ) |
30 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → 𝑔 ∈ 𝑇 ) |
31 |
1 2 3
|
tendovalco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸 ) ∧ ( ℎ ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑆 ‘ ( ℎ ∘ 𝑔 ) ) = ( ( 𝑆 ‘ ℎ ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
32 |
27 28 18 29 30 31
|
syl32anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑆 ‘ ( ℎ ∘ 𝑔 ) ) = ( ( 𝑆 ‘ ℎ ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
33 |
26 32
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( 𝑆 ‘ ( 𝑔 ∘ ℎ ) ) = ( ( 𝑆 ‘ ℎ ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
34 |
33
|
cnveqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ◡ ( 𝑆 ‘ ( 𝑔 ∘ ℎ ) ) = ◡ ( ( 𝑆 ‘ ℎ ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
35 |
4 2
|
tendoi2 |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
36 |
18 30 35
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
37 |
4 2
|
tendoi2 |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ ℎ ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ ℎ ) = ◡ ( 𝑆 ‘ ℎ ) ) |
38 |
18 29 37
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ ℎ ) = ◡ ( 𝑆 ‘ ℎ ) ) |
39 |
36 38
|
coeq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( ( 𝐼 ‘ 𝑆 ) ‘ ℎ ) ) = ( ◡ ( 𝑆 ‘ 𝑔 ) ∘ ◡ ( 𝑆 ‘ ℎ ) ) ) |
40 |
23 34 39
|
3eqtr4a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ◡ ( 𝑆 ‘ ( 𝑔 ∘ ℎ ) ) = ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( ( 𝐼 ‘ 𝑆 ) ‘ ℎ ) ) ) |
41 |
22 40
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ ( 𝑔 ∘ ℎ ) ) = ( ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ∘ ( ( 𝐼 ‘ 𝑆 ) ‘ ℎ ) ) ) |
42 |
35
|
adantll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
43 |
42
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |
44 |
1 2 6
|
trlcnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ‘ 𝑔 ) ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ◡ ( 𝑆 ‘ 𝑔 ) ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆 ‘ 𝑔 ) ) ) |
45 |
8 10 44
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ◡ ( 𝑆 ‘ 𝑔 ) ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆 ‘ 𝑔 ) ) ) |
46 |
43 45
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆 ‘ 𝑔 ) ) ) |
47 |
5 1 2 6 3
|
tendotp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆 ‘ 𝑔 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) |
48 |
47
|
3expa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆 ‘ 𝑔 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) |
49 |
46 48
|
eqbrtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) ∧ 𝑔 ∈ 𝑇 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( 𝐼 ‘ 𝑆 ) ‘ 𝑔 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑔 ) ) |
50 |
5 1 2 6 3 7 17 41 49
|
istendod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → ( 𝐼 ‘ 𝑆 ) ∈ 𝐸 ) |