Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendoi.i | ⊢ 𝐼 = ( 𝑠 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑠 ‘ 𝑓 ) ) ) | |
tendoi.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | ||
Assertion | tendoi | ⊢ ( 𝑆 ∈ 𝐸 → ( 𝐼 ‘ 𝑆 ) = ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | ⊢ 𝐼 = ( 𝑠 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑠 ‘ 𝑓 ) ) ) | |
2 | tendoi.t | ⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | fveq1 | ⊢ ( 𝑢 = 𝑆 → ( 𝑢 ‘ 𝑔 ) = ( 𝑆 ‘ 𝑔 ) ) | |
4 | 3 | cnveqd | ⊢ ( 𝑢 = 𝑆 → ◡ ( 𝑢 ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝑔 ) ) |
5 | 4 | mpteq2dv | ⊢ ( 𝑢 = 𝑆 → ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑢 ‘ 𝑔 ) ) = ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |
6 | 1 | tendoicbv | ⊢ 𝐼 = ( 𝑢 ∈ 𝐸 ↦ ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑢 ‘ 𝑔 ) ) ) |
7 | 5 6 2 | mptfvmpt | ⊢ ( 𝑆 ∈ 𝐸 → ( 𝐼 ‘ 𝑆 ) = ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |