Metamath Proof Explorer


Theorem tendoi

Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013)

Ref Expression
Hypotheses tendoi.i 𝐼 = ( 𝑠𝐸 ↦ ( 𝑓𝑇 ( 𝑠𝑓 ) ) )
tendoi.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendoi ( 𝑆𝐸 → ( 𝐼𝑆 ) = ( 𝑔𝑇 ( 𝑆𝑔 ) ) )

Proof

Step Hyp Ref Expression
1 tendoi.i 𝐼 = ( 𝑠𝐸 ↦ ( 𝑓𝑇 ( 𝑠𝑓 ) ) )
2 tendoi.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 fveq1 ( 𝑢 = 𝑆 → ( 𝑢𝑔 ) = ( 𝑆𝑔 ) )
4 3 cnveqd ( 𝑢 = 𝑆 ( 𝑢𝑔 ) = ( 𝑆𝑔 ) )
5 4 mpteq2dv ( 𝑢 = 𝑆 → ( 𝑔𝑇 ( 𝑢𝑔 ) ) = ( 𝑔𝑇 ( 𝑆𝑔 ) ) )
6 1 tendoicbv 𝐼 = ( 𝑢𝐸 ↦ ( 𝑔𝑇 ( 𝑢𝑔 ) ) )
7 5 6 2 mptfvmpt ( 𝑆𝐸 → ( 𝐼𝑆 ) = ( 𝑔𝑇 ( 𝑆𝑔 ) ) )