Step |
Hyp |
Ref |
Expression |
1 |
|
tendoi.i |
⊢ 𝐼 = ( 𝑠 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ◡ ( 𝑠 ‘ 𝑓 ) ) ) |
2 |
|
tendoi.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
1 2
|
tendoi |
⊢ ( 𝑆 ∈ 𝐸 → ( 𝐼 ‘ 𝑆 ) = ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝐼 ‘ 𝑆 ) = ( 𝑔 ∈ 𝑇 ↦ ◡ ( 𝑆 ‘ 𝑔 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑔 = 𝐹 → ( 𝑆 ‘ 𝑔 ) = ( 𝑆 ‘ 𝐹 ) ) |
6 |
5
|
cnveqd |
⊢ ( 𝑔 = 𝐹 → ◡ ( 𝑆 ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝐹 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) ∧ 𝑔 = 𝐹 ) → ◡ ( 𝑆 ‘ 𝑔 ) = ◡ ( 𝑆 ‘ 𝐹 ) ) |
8 |
|
simpr |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → 𝐹 ∈ 𝑇 ) |
9 |
|
fvex |
⊢ ( 𝑆 ‘ 𝐹 ) ∈ V |
10 |
9
|
cnvex |
⊢ ◡ ( 𝑆 ‘ 𝐹 ) ∈ V |
11 |
10
|
a1i |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ◡ ( 𝑆 ‘ 𝐹 ) ∈ V ) |
12 |
4 7 8 11
|
fvmptd |
⊢ ( ( 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝐼 ‘ 𝑆 ) ‘ 𝐹 ) = ◡ ( 𝑆 ‘ 𝐹 ) ) |