Metamath Proof Explorer


Theorem tendoi2

Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013)

Ref Expression
Hypotheses tendoi.i
|- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) )
tendoi.t
|- T = ( ( LTrn ` K ) ` W )
Assertion tendoi2
|- ( ( S e. E /\ F e. T ) -> ( ( I ` S ) ` F ) = `' ( S ` F ) )

Proof

Step Hyp Ref Expression
1 tendoi.i
 |-  I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) )
2 tendoi.t
 |-  T = ( ( LTrn ` K ) ` W )
3 1 2 tendoi
 |-  ( S e. E -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) )
4 3 adantr
 |-  ( ( S e. E /\ F e. T ) -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) )
5 fveq2
 |-  ( g = F -> ( S ` g ) = ( S ` F ) )
6 5 cnveqd
 |-  ( g = F -> `' ( S ` g ) = `' ( S ` F ) )
7 6 adantl
 |-  ( ( ( S e. E /\ F e. T ) /\ g = F ) -> `' ( S ` g ) = `' ( S ` F ) )
8 simpr
 |-  ( ( S e. E /\ F e. T ) -> F e. T )
9 fvex
 |-  ( S ` F ) e. _V
10 9 cnvex
 |-  `' ( S ` F ) e. _V
11 10 a1i
 |-  ( ( S e. E /\ F e. T ) -> `' ( S ` F ) e. _V )
12 4 7 8 11 fvmptd
 |-  ( ( S e. E /\ F e. T ) -> ( ( I ` S ) ` F ) = `' ( S ` F ) )