Step |
Hyp |
Ref |
Expression |
1 |
|
tendoi.i |
|- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) ) |
2 |
|
tendoi.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
1 2
|
tendoi |
|- ( S e. E -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) ) |
4 |
3
|
adantr |
|- ( ( S e. E /\ F e. T ) -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) ) |
5 |
|
fveq2 |
|- ( g = F -> ( S ` g ) = ( S ` F ) ) |
6 |
5
|
cnveqd |
|- ( g = F -> `' ( S ` g ) = `' ( S ` F ) ) |
7 |
6
|
adantl |
|- ( ( ( S e. E /\ F e. T ) /\ g = F ) -> `' ( S ` g ) = `' ( S ` F ) ) |
8 |
|
simpr |
|- ( ( S e. E /\ F e. T ) -> F e. T ) |
9 |
|
fvex |
|- ( S ` F ) e. _V |
10 |
9
|
cnvex |
|- `' ( S ` F ) e. _V |
11 |
10
|
a1i |
|- ( ( S e. E /\ F e. T ) -> `' ( S ` F ) e. _V ) |
12 |
4 7 8 11
|
fvmptd |
|- ( ( S e. E /\ F e. T ) -> ( ( I ` S ) ` F ) = `' ( S ` F ) ) |