Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tendoi.i | |- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) ) |
|
tendoi.t | |- T = ( ( LTrn ` K ) ` W ) |
||
Assertion | tendoi | |- ( S e. E -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoi.i | |- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) ) |
|
2 | tendoi.t | |- T = ( ( LTrn ` K ) ` W ) |
|
3 | fveq1 | |- ( u = S -> ( u ` g ) = ( S ` g ) ) |
|
4 | 3 | cnveqd | |- ( u = S -> `' ( u ` g ) = `' ( S ` g ) ) |
5 | 4 | mpteq2dv | |- ( u = S -> ( g e. T |-> `' ( u ` g ) ) = ( g e. T |-> `' ( S ` g ) ) ) |
6 | 1 | tendoicbv | |- I = ( u e. E |-> ( g e. T |-> `' ( u ` g ) ) ) |
7 | 5 6 2 | mptfvmpt | |- ( S e. E -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) ) |