Metamath Proof Explorer


Theorem tendoi

Description: Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013)

Ref Expression
Hypotheses tendoi.i
|- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) )
tendoi.t
|- T = ( ( LTrn ` K ) ` W )
Assertion tendoi
|- ( S e. E -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) )

Proof

Step Hyp Ref Expression
1 tendoi.i
 |-  I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) )
2 tendoi.t
 |-  T = ( ( LTrn ` K ) ` W )
3 fveq1
 |-  ( u = S -> ( u ` g ) = ( S ` g ) )
4 3 cnveqd
 |-  ( u = S -> `' ( u ` g ) = `' ( S ` g ) )
5 4 mpteq2dv
 |-  ( u = S -> ( g e. T |-> `' ( u ` g ) ) = ( g e. T |-> `' ( S ` g ) ) )
6 1 tendoicbv
 |-  I = ( u e. E |-> ( g e. T |-> `' ( u ` g ) ) )
7 5 6 2 mptfvmpt
 |-  ( S e. E -> ( I ` S ) = ( g e. T |-> `' ( S ` g ) ) )