Step |
Hyp |
Ref |
Expression |
1 |
|
tendoi.i |
|- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) ) |
2 |
|
fveq1 |
|- ( s = u -> ( s ` f ) = ( u ` f ) ) |
3 |
2
|
cnveqd |
|- ( s = u -> `' ( s ` f ) = `' ( u ` f ) ) |
4 |
3
|
mpteq2dv |
|- ( s = u -> ( f e. T |-> `' ( s ` f ) ) = ( f e. T |-> `' ( u ` f ) ) ) |
5 |
|
fveq2 |
|- ( f = g -> ( u ` f ) = ( u ` g ) ) |
6 |
5
|
cnveqd |
|- ( f = g -> `' ( u ` f ) = `' ( u ` g ) ) |
7 |
6
|
cbvmptv |
|- ( f e. T |-> `' ( u ` f ) ) = ( g e. T |-> `' ( u ` g ) ) |
8 |
4 7
|
eqtrdi |
|- ( s = u -> ( f e. T |-> `' ( s ` f ) ) = ( g e. T |-> `' ( u ` g ) ) ) |
9 |
8
|
cbvmptv |
|- ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) ) = ( u e. E |-> ( g e. T |-> `' ( u ` g ) ) ) |
10 |
1 9
|
eqtri |
|- I = ( u e. E |-> ( g e. T |-> `' ( u ` g ) ) ) |