Metamath Proof Explorer


Theorem tendoi2

Description: Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013)

Ref Expression
Hypotheses tendoi.i I=sEfTsf-1
tendoi.t T=LTrnKW
Assertion tendoi2 SEFTISF=SF-1

Proof

Step Hyp Ref Expression
1 tendoi.i I=sEfTsf-1
2 tendoi.t T=LTrnKW
3 1 2 tendoi SEIS=gTSg-1
4 3 adantr SEFTIS=gTSg-1
5 fveq2 g=FSg=SF
6 5 cnveqd g=FSg-1=SF-1
7 6 adantl SEFTg=FSg-1=SF-1
8 simpr SEFTFT
9 fvex SFV
10 9 cnvex SF-1V
11 10 a1i SEFTSF-1V
12 4 7 8 11 fvmptd SEFTISF=SF-1