Metamath Proof Explorer


Theorem tendoipl2

Description: Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses tendoicl.h H = LHyp K
tendoicl.t T = LTrn K W
tendoicl.e E = TEndo K W
tendoicl.i I = s E f T s f -1
tendoi.b B = Base K
tendoi.p P = s E , t E f T s f t f
tendoi.o O = f T I B
Assertion tendoipl2 K HL W H S E S P I S = O

Proof

Step Hyp Ref Expression
1 tendoicl.h H = LHyp K
2 tendoicl.t T = LTrn K W
3 tendoicl.e E = TEndo K W
4 tendoicl.i I = s E f T s f -1
5 tendoi.b B = Base K
6 tendoi.p P = s E , t E f T s f t f
7 tendoi.o O = f T I B
8 1 2 3 4 tendoicl K HL W H S E I S E
9 1 2 3 6 tendoplcom K HL W H S E I S E S P I S = I S P S
10 8 9 mpd3an3 K HL W H S E S P I S = I S P S
11 1 2 3 4 5 6 7 tendoipl K HL W H S E I S P S = O
12 10 11 eqtrd K HL W H S E S P I S = O