Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
tendoipl2
Next ⟩
erngfset
Metamath Proof Explorer
Ascii
Unicode
Theorem
tendoipl2
Description:
Property of the additive inverse endomorphism.
(Contributed by
NM
, 29-Sep-2014)
Ref
Expression
Hypotheses
tendoicl.h
⊢
H
=
LHyp
⁡
K
tendoicl.t
⊢
T
=
LTrn
⁡
K
⁡
W
tendoicl.e
⊢
E
=
TEndo
⁡
K
⁡
W
tendoicl.i
⊢
I
=
s
∈
E
⟼
f
∈
T
⟼
s
⁡
f
-1
tendoi.b
⊢
B
=
Base
K
tendoi.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
tendoi.o
⊢
O
=
f
∈
T
⟼
I
↾
B
Assertion
tendoipl2
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
S
P
I
⁡
S
=
O
Proof
Step
Hyp
Ref
Expression
1
tendoicl.h
⊢
H
=
LHyp
⁡
K
2
tendoicl.t
⊢
T
=
LTrn
⁡
K
⁡
W
3
tendoicl.e
⊢
E
=
TEndo
⁡
K
⁡
W
4
tendoicl.i
⊢
I
=
s
∈
E
⟼
f
∈
T
⟼
s
⁡
f
-1
5
tendoi.b
⊢
B
=
Base
K
6
tendoi.p
⊢
P
=
s
∈
E
,
t
∈
E
⟼
f
∈
T
⟼
s
⁡
f
∘
t
⁡
f
7
tendoi.o
⊢
O
=
f
∈
T
⟼
I
↾
B
8
1
2
3
4
tendoicl
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
I
⁡
S
∈
E
9
1
2
3
6
tendoplcom
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
∧
I
⁡
S
∈
E
→
S
P
I
⁡
S
=
I
⁡
S
P
S
10
8
9
mpd3an3
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
S
P
I
⁡
S
=
I
⁡
S
P
S
11
1
2
3
4
5
6
7
tendoipl
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
I
⁡
S
P
S
=
O
12
10
11
eqtrd
⊢
K
∈
HL
∧
W
∈
H
∧
S
∈
E
→
S
P
I
⁡
S
=
O