Metamath Proof Explorer


Theorem erngfset

Description: The division rings on trace-preserving endomorphisms for a lattice K . (Contributed by NM, 8-Jun-2013)

Ref Expression
Hypothesis erngset.h H=LHypK
Assertion erngfset KVEDRingK=wHBasendxTEndoKw+ndxsTEndoKw,tTEndoKwfLTrnKwsftfndxsTEndoKw,tTEndoKwst

Proof

Step Hyp Ref Expression
1 erngset.h H=LHypK
2 elex KVKV
3 fveq2 k=KLHypk=LHypK
4 3 1 eqtr4di k=KLHypk=H
5 fveq2 k=KTEndok=TEndoK
6 5 fveq1d k=KTEndokw=TEndoKw
7 6 opeq2d k=KBasendxTEndokw=BasendxTEndoKw
8 fveq2 k=KLTrnk=LTrnK
9 8 fveq1d k=KLTrnkw=LTrnKw
10 9 mpteq1d k=KfLTrnkwsftf=fLTrnKwsftf
11 6 6 10 mpoeq123dv k=KsTEndokw,tTEndokwfLTrnkwsftf=sTEndoKw,tTEndoKwfLTrnKwsftf
12 11 opeq2d k=K+ndxsTEndokw,tTEndokwfLTrnkwsftf=+ndxsTEndoKw,tTEndoKwfLTrnKwsftf
13 eqidd k=Kst=st
14 6 6 13 mpoeq123dv k=KsTEndokw,tTEndokwst=sTEndoKw,tTEndoKwst
15 14 opeq2d k=KndxsTEndokw,tTEndokwst=ndxsTEndoKw,tTEndoKwst
16 7 12 15 tpeq123d k=KBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwst=BasendxTEndoKw+ndxsTEndoKw,tTEndoKwfLTrnKwsftfndxsTEndoKw,tTEndoKwst
17 4 16 mpteq12dv k=KwLHypkBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwst=wHBasendxTEndoKw+ndxsTEndoKw,tTEndoKwfLTrnKwsftfndxsTEndoKw,tTEndoKwst
18 df-edring EDRing=kVwLHypkBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwst
19 17 18 1 mptfvmpt KVEDRingK=wHBasendxTEndoKw+ndxsTEndoKw,tTEndoKwfLTrnKwsftfndxsTEndoKw,tTEndoKwst
20 2 19 syl KVEDRingK=wHBasendxTEndoKw+ndxsTEndoKw,tTEndoKwfLTrnKwsftfndxsTEndoKw,tTEndoKwst