| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoicl.h |
|- H = ( LHyp ` K ) |
| 2 |
|
tendoicl.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
tendoicl.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 4 |
|
tendoicl.i |
|- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) ) |
| 5 |
|
tendoi.b |
|- B = ( Base ` K ) |
| 6 |
|
tendoi.p |
|- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
| 7 |
|
tendoi.o |
|- O = ( f e. T |-> ( _I |` B ) ) |
| 8 |
1 2 3 4
|
tendoicl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( I ` S ) e. E ) |
| 9 |
1 2 3 6
|
tendoplcom |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( I ` S ) e. E ) -> ( S P ( I ` S ) ) = ( ( I ` S ) P S ) ) |
| 10 |
8 9
|
mpd3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S P ( I ` S ) ) = ( ( I ` S ) P S ) ) |
| 11 |
1 2 3 4 5 6 7
|
tendoipl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( I ` S ) P S ) = O ) |
| 12 |
10 11
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S P ( I ` S ) ) = O ) |