| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tendoicl.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | tendoicl.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 3 |  | tendoicl.e |  |-  E = ( ( TEndo ` K ) ` W ) | 
						
							| 4 |  | tendoicl.i |  |-  I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) ) | 
						
							| 5 |  | tendoi.b |  |-  B = ( Base ` K ) | 
						
							| 6 |  | tendoi.p |  |-  P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) | 
						
							| 7 |  | tendoi.o |  |-  O = ( f e. T |-> ( _I |` B ) ) | 
						
							| 8 | 1 2 3 4 | tendoicl |  |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( I ` S ) e. E ) | 
						
							| 9 | 1 2 3 6 | tendoplcom |  |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( I ` S ) e. E ) -> ( S P ( I ` S ) ) = ( ( I ` S ) P S ) ) | 
						
							| 10 | 8 9 | mpd3an3 |  |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S P ( I ` S ) ) = ( ( I ` S ) P S ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 | tendoipl |  |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( I ` S ) P S ) = O ) | 
						
							| 12 | 10 11 | eqtrd |  |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S P ( I ` S ) ) = O ) |