Metamath Proof Explorer


Theorem tendoipl2

Description: Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014)

Ref Expression
Hypotheses tendoicl.h
|- H = ( LHyp ` K )
tendoicl.t
|- T = ( ( LTrn ` K ) ` W )
tendoicl.e
|- E = ( ( TEndo ` K ) ` W )
tendoicl.i
|- I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) )
tendoi.b
|- B = ( Base ` K )
tendoi.p
|- P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
tendoi.o
|- O = ( f e. T |-> ( _I |` B ) )
Assertion tendoipl2
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S P ( I ` S ) ) = O )

Proof

Step Hyp Ref Expression
1 tendoicl.h
 |-  H = ( LHyp ` K )
2 tendoicl.t
 |-  T = ( ( LTrn ` K ) ` W )
3 tendoicl.e
 |-  E = ( ( TEndo ` K ) ` W )
4 tendoicl.i
 |-  I = ( s e. E |-> ( f e. T |-> `' ( s ` f ) ) )
5 tendoi.b
 |-  B = ( Base ` K )
6 tendoi.p
 |-  P = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
7 tendoi.o
 |-  O = ( f e. T |-> ( _I |` B ) )
8 1 2 3 4 tendoicl
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( I ` S ) e. E )
9 1 2 3 6 tendoplcom
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E /\ ( I ` S ) e. E ) -> ( S P ( I ` S ) ) = ( ( I ` S ) P S ) )
10 8 9 mpd3an3
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S P ( I ` S ) ) = ( ( I ` S ) P S ) )
11 1 2 3 4 5 6 7 tendoipl
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( ( I ` S ) P S ) = O )
12 10 11 eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S P ( I ` S ) ) = O )