Metamath Proof Explorer


Theorem spc3egv

Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 25-Aug-2023)

Ref Expression
Hypothesis spc3egv.1 x=Ay=Bz=Cφψ
Assertion spc3egv AVBWCXψxyzφ

Proof

Step Hyp Ref Expression
1 spc3egv.1 x=Ay=Bz=Cφψ
2 elex AVAV
3 elex BWBV
4 elex CXCV
5 simp1 AVBVCVAV
6 1 3coml y=Bz=Cx=Aφψ
7 6 3expa y=Bz=Cx=Aφψ
8 7 pm5.74da y=Bz=Cx=Aφx=Aψ
9 8 spc2egv BVCVx=Aψyzx=Aφ
10 19.37v zx=Aφx=Azφ
11 10 exbii yzx=Aφyx=Azφ
12 19.37v yx=Azφx=Ayzφ
13 11 12 bitri yzx=Aφx=Ayzφ
14 9 13 imbitrdi BVCVx=Aψx=Ayzφ
15 14 pm2.86d BVCVx=Aψyzφ
16 15 3adant1 AVBVCVx=Aψyzφ
17 16 imp AVBVCVx=Aψyzφ
18 5 17 spcimedv AVBVCVψxyzφ
19 2 3 4 18 syl3an AVBWCXψxyzφ