Metamath Proof Explorer


Theorem dihjatcclem2

Description: Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dihjatcclem.b 𝐵 = ( Base ‘ 𝐾 )
dihjatcclem.l = ( le ‘ 𝐾 )
dihjatcclem.h 𝐻 = ( LHyp ‘ 𝐾 )
dihjatcclem.j = ( join ‘ 𝐾 )
dihjatcclem.m = ( meet ‘ 𝐾 )
dihjatcclem.a 𝐴 = ( Atoms ‘ 𝐾 )
dihjatcclem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihjatcclem.s = ( LSSum ‘ 𝑈 )
dihjatcclem.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihjatcclem.v 𝑉 = ( ( 𝑃 𝑄 ) 𝑊 )
dihjatcclem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihjatcclem.p ( 𝜑 → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
dihjatcclem.q ( 𝜑 → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
dihjatcclem2.c ( 𝜑 → ( 𝐼𝑉 ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )
Assertion dihjatcclem2 ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) = ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 dihjatcclem.b 𝐵 = ( Base ‘ 𝐾 )
2 dihjatcclem.l = ( le ‘ 𝐾 )
3 dihjatcclem.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dihjatcclem.j = ( join ‘ 𝐾 )
5 dihjatcclem.m = ( meet ‘ 𝐾 )
6 dihjatcclem.a 𝐴 = ( Atoms ‘ 𝐾 )
7 dihjatcclem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
8 dihjatcclem.s = ( LSSum ‘ 𝑈 )
9 dihjatcclem.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
10 dihjatcclem.v 𝑉 = ( ( 𝑃 𝑄 ) 𝑊 )
11 dihjatcclem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 dihjatcclem.p ( 𝜑 → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 dihjatcclem.q ( 𝜑 → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
14 dihjatcclem2.c ( 𝜑 → ( 𝐼𝑉 ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 dihjatcclem1 ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) = ( ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ( 𝐼𝑉 ) ) )
16 3 7 11 dvhlmod ( 𝜑𝑈 ∈ LMod )
17 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
18 17 lsssssubg ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
19 16 18 syl ( 𝜑 → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
20 12 simpld ( 𝜑𝑃𝐴 )
21 1 6 atbase ( 𝑃𝐴𝑃𝐵 )
22 20 21 syl ( 𝜑𝑃𝐵 )
23 1 3 9 7 17 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐵 ) → ( 𝐼𝑃 ) ∈ ( LSubSp ‘ 𝑈 ) )
24 11 22 23 syl2anc ( 𝜑 → ( 𝐼𝑃 ) ∈ ( LSubSp ‘ 𝑈 ) )
25 13 simpld ( 𝜑𝑄𝐴 )
26 1 6 atbase ( 𝑄𝐴𝑄𝐵 )
27 25 26 syl ( 𝜑𝑄𝐵 )
28 1 3 9 7 17 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑄𝐵 ) → ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
29 11 27 28 syl2anc ( 𝜑 → ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
30 17 8 lsmcl ( ( 𝑈 ∈ LMod ∧ ( 𝐼𝑃 ) ∈ ( LSubSp ‘ 𝑈 ) ∧ ( 𝐼𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) → ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
31 16 24 29 30 syl3anc ( 𝜑 → ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
32 19 31 sseldd ( 𝜑 → ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) )
33 10 fveq2i ( 𝐼𝑉 ) = ( 𝐼 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) )
34 11 simpld ( 𝜑𝐾 ∈ HL )
35 34 hllatd ( 𝜑𝐾 ∈ Lat )
36 1 4 6 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
37 34 20 25 36 syl3anc ( 𝜑 → ( 𝑃 𝑄 ) ∈ 𝐵 )
38 11 simprd ( 𝜑𝑊𝐻 )
39 1 3 lhpbase ( 𝑊𝐻𝑊𝐵 )
40 38 39 syl ( 𝜑𝑊𝐵 )
41 1 5 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐵 )
42 35 37 40 41 syl3anc ( 𝜑 → ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐵 )
43 1 3 9 7 17 dihlss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃 𝑄 ) 𝑊 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
44 11 42 43 syl2anc ( 𝜑 → ( 𝐼 ‘ ( ( 𝑃 𝑄 ) 𝑊 ) ) ∈ ( LSubSp ‘ 𝑈 ) )
45 33 44 eqeltrid ( 𝜑 → ( 𝐼𝑉 ) ∈ ( LSubSp ‘ 𝑈 ) )
46 19 45 sseldd ( 𝜑 → ( 𝐼𝑉 ) ∈ ( SubGrp ‘ 𝑈 ) )
47 8 lsmss2 ( ( ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼𝑉 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼𝑉 ) ⊆ ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ) → ( ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ( 𝐼𝑉 ) ) = ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )
48 32 46 14 47 syl3anc ( 𝜑 → ( ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) ( 𝐼𝑉 ) ) = ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )
49 15 48 eqtrd ( 𝜑 → ( 𝐼 ‘ ( 𝑃 𝑄 ) ) = ( ( 𝐼𝑃 ) ( 𝐼𝑄 ) ) )