Step |
Hyp |
Ref |
Expression |
1 |
|
dihjatb.l |
|- .<_ = ( le ` K ) |
2 |
|
dihjatb.h |
|- H = ( LHyp ` K ) |
3 |
|
dihjatb.j |
|- .\/ = ( join ` K ) |
4 |
|
dihjatb.a |
|- A = ( Atoms ` K ) |
5 |
|
dihjatb.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dihjatb.s |
|- .(+) = ( LSSum ` U ) |
7 |
|
dihjatb.i |
|- I = ( ( DIsoH ` K ) ` W ) |
8 |
|
dihjatb.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
dihjatb.p |
|- ( ph -> ( P e. A /\ P .<_ W ) ) |
10 |
|
dihjatb.q |
|- ( ph -> ( Q e. A /\ Q .<_ W ) ) |
11 |
1 3 4 2 5 6 7 8 9 10
|
dih2dimb |
|- ( ph -> ( I ` ( P .\/ Q ) ) C_ ( ( I ` P ) .(+) ( I ` Q ) ) ) |
12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
13 |
9
|
simpld |
|- ( ph -> P e. A ) |
14 |
12 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
15 |
13 14
|
syl |
|- ( ph -> P e. ( Base ` K ) ) |
16 |
10
|
simpld |
|- ( ph -> Q e. A ) |
17 |
12 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
18 |
16 17
|
syl |
|- ( ph -> Q e. ( Base ` K ) ) |
19 |
12 2 3 5 6 7 8 15 18
|
dihsumssj |
|- ( ph -> ( ( I ` P ) .(+) ( I ` Q ) ) C_ ( I ` ( P .\/ Q ) ) ) |
20 |
11 19
|
eqssd |
|- ( ph -> ( I ` ( P .\/ Q ) ) = ( ( I ` P ) .(+) ( I ` Q ) ) ) |