| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihsumssj.b |
|- B = ( Base ` K ) |
| 2 |
|
dihsumssj.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dihsumssj.j |
|- .\/ = ( join ` K ) |
| 4 |
|
dihsumssj.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dihsumssj.p |
|- .(+) = ( LSSum ` U ) |
| 6 |
|
dihsumssj.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
dihsumssj.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
dihsumssj.x |
|- ( ph -> X e. B ) |
| 9 |
|
dihsumssj.y |
|- ( ph -> Y e. B ) |
| 10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 11 |
|
eqid |
|- ( ( joinH ` K ) ` W ) = ( ( joinH ` K ) ` W ) |
| 12 |
1 2 6 4 10
|
dihss |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) C_ ( Base ` U ) ) |
| 13 |
7 8 12
|
syl2anc |
|- ( ph -> ( I ` X ) C_ ( Base ` U ) ) |
| 14 |
1 2 6 4 10
|
dihss |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. B ) -> ( I ` Y ) C_ ( Base ` U ) ) |
| 15 |
7 9 14
|
syl2anc |
|- ( ph -> ( I ` Y ) C_ ( Base ` U ) ) |
| 16 |
2 4 10 5 11 7 13 15
|
djhsumss |
|- ( ph -> ( ( I ` X ) .(+) ( I ` Y ) ) C_ ( ( I ` X ) ( ( joinH ` K ) ` W ) ( I ` Y ) ) ) |
| 17 |
1 3 2 6 11
|
djhlj |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ Y e. B ) ) -> ( I ` ( X .\/ Y ) ) = ( ( I ` X ) ( ( joinH ` K ) ` W ) ( I ` Y ) ) ) |
| 18 |
7 8 9 17
|
syl12anc |
|- ( ph -> ( I ` ( X .\/ Y ) ) = ( ( I ` X ) ( ( joinH ` K ) ` W ) ( I ` Y ) ) ) |
| 19 |
16 18
|
sseqtrrd |
|- ( ph -> ( ( I ` X ) .(+) ( I ` Y ) ) C_ ( I ` ( X .\/ Y ) ) ) |