| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihsumssj.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihsumssj.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
dihsumssj.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
dihsumssj.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dihsumssj.p |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 6 |
|
dihsumssj.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
dihsumssj.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
dihsumssj.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
dihsumssj.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 11 |
|
eqid |
⊢ ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
| 12 |
1 2 6 4 10
|
dihss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 13 |
7 8 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 14 |
1 2 6 4 10
|
dihss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 15 |
7 9 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 16 |
2 4 10 5 11 7 13 15
|
djhsumss |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑌 ) ) ⊆ ( ( 𝐼 ‘ 𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼 ‘ 𝑌 ) ) ) |
| 17 |
1 3 2 6 11
|
djhlj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼 ‘ 𝑌 ) ) ) |
| 18 |
7 8 9 17
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼 ‘ 𝑌 ) ) ) |
| 19 |
16 18
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) ⊕ ( 𝐼 ‘ 𝑌 ) ) ⊆ ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) ) |