Metamath Proof Explorer


Theorem dihsumssj

Description: The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014)

Ref Expression
Hypotheses dihsumssj.b 𝐵 = ( Base ‘ 𝐾 )
dihsumssj.h 𝐻 = ( LHyp ‘ 𝐾 )
dihsumssj.j = ( join ‘ 𝐾 )
dihsumssj.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dihsumssj.p = ( LSSum ‘ 𝑈 )
dihsumssj.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
dihsumssj.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
dihsumssj.x ( 𝜑𝑋𝐵 )
dihsumssj.y ( 𝜑𝑌𝐵 )
Assertion dihsumssj ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) ⊆ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 dihsumssj.b 𝐵 = ( Base ‘ 𝐾 )
2 dihsumssj.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dihsumssj.j = ( join ‘ 𝐾 )
4 dihsumssj.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dihsumssj.p = ( LSSum ‘ 𝑈 )
6 dihsumssj.i 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 )
7 dihsumssj.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 dihsumssj.x ( 𝜑𝑋𝐵 )
9 dihsumssj.y ( 𝜑𝑌𝐵 )
10 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
11 eqid ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
12 1 2 6 4 10 dihss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝐵 ) → ( 𝐼𝑋 ) ⊆ ( Base ‘ 𝑈 ) )
13 7 8 12 syl2anc ( 𝜑 → ( 𝐼𝑋 ) ⊆ ( Base ‘ 𝑈 ) )
14 1 2 6 4 10 dihss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑌𝐵 ) → ( 𝐼𝑌 ) ⊆ ( Base ‘ 𝑈 ) )
15 7 9 14 syl2anc ( 𝜑 → ( 𝐼𝑌 ) ⊆ ( Base ‘ 𝑈 ) )
16 2 4 10 5 11 7 13 15 djhsumss ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) ⊆ ( ( 𝐼𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼𝑌 ) ) )
17 1 3 2 6 11 djhlj ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼𝑌 ) ) )
18 7 8 9 17 syl12anc ( 𝜑 → ( 𝐼 ‘ ( 𝑋 𝑌 ) ) = ( ( 𝐼𝑋 ) ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) ( 𝐼𝑌 ) ) )
19 16 18 sseqtrrd ( 𝜑 → ( ( 𝐼𝑋 ) ( 𝐼𝑌 ) ) ⊆ ( 𝐼 ‘ ( 𝑋 𝑌 ) ) )