Step |
Hyp |
Ref |
Expression |
1 |
|
djhlj.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
djhlj.k |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
djhlj.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
djhlj.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
djhlj.j |
⊢ 𝐽 = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
10 |
1 3 4 8 9
|
dihss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
11 |
7 10
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
12 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
13 |
1 3 4 8 9
|
dihss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
14 |
12 13
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
15 |
|
eqid |
⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
3 8 9 15 5
|
djhval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
17 |
6 11 14 16
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
18 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐾 ∈ OP ) |
20 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
21 |
1 20
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
22 |
19 7 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
23 |
1 20
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
24 |
19 12 23
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
25 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
26 |
1 25 3 4
|
dihmeet |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝐼 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
27 |
6 22 24 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
28 |
1 20 3 4 15
|
dochvalr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
29 |
7 28
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
30 |
1 20 3 4 15
|
dochvalr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
31 |
12 30
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
32 |
29 31
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) = ( ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ∩ ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) |
33 |
27 32
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) |
34 |
33
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
35 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
37 |
1 25
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
38 |
36 22 24 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) |
39 |
1 20 3 4 15
|
dochvalr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ∈ 𝐵 ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
40 |
38 39
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
41 |
34 40
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) = ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) ) |
42 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐾 ∈ OL ) |
44 |
1 2 25 20
|
oldmm4 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |
45 |
43 7 12 44
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) = ( 𝑋 ∨ 𝑌 ) ) |
46 |
45
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) ) = ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) ) |
47 |
17 41 46
|
3eqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |