Step |
Hyp |
Ref |
Expression |
1 |
|
djhlj.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
djhlj.k |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
djhlj.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
djhlj.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
djhlj.j |
⊢ 𝐽 = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
djhljj.w |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
djhljj.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
djhljj.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
1 2 3 4 5
|
djhlj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
10 |
6 7 8 9
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
11 |
1 3 4
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
12 |
6 7 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
13 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
3 13 4 14
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
16 |
6 12 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
17 |
1 3 4
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) |
18 |
6 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) |
19 |
3 13 4 14
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
20 |
6 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
21 |
3 4 13 14 5
|
djhcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) |
22 |
6 16 20 21
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) |
23 |
3 4
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
24 |
6 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
25 |
10 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
26 |
6
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
27 |
26
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
28 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
29 |
27 7 8 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
30 |
1 3 4
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
31 |
6 22 30
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
32 |
1 3 4
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ↔ ( 𝑋 ∨ 𝑌 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
33 |
6 29 31 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ↔ ( 𝑋 ∨ 𝑌 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
34 |
25 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) |