Metamath Proof Explorer


Theorem djhljjN

Description: Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses djhlj.b B=BaseK
djhlj.k ˙=joinK
djhlj.h H=LHypK
djhlj.i I=DIsoHKW
djhlj.j J=joinHKW
djhljj.w φKHLWH
djhljj.x φXB
djhljj.y φYB
Assertion djhljjN φX˙Y=I-1IXJIY

Proof

Step Hyp Ref Expression
1 djhlj.b B=BaseK
2 djhlj.k ˙=joinK
3 djhlj.h H=LHypK
4 djhlj.i I=DIsoHKW
5 djhlj.j J=joinHKW
6 djhljj.w φKHLWH
7 djhljj.x φXB
8 djhljj.y φYB
9 1 2 3 4 5 djhlj KHLWHXBYBIX˙Y=IXJIY
10 6 7 8 9 syl12anc φIX˙Y=IXJIY
11 1 3 4 dihcl KHLWHXBIXranI
12 6 7 11 syl2anc φIXranI
13 eqid DVecHKW=DVecHKW
14 eqid BaseDVecHKW=BaseDVecHKW
15 3 13 4 14 dihrnss KHLWHIXranIIXBaseDVecHKW
16 6 12 15 syl2anc φIXBaseDVecHKW
17 1 3 4 dihcl KHLWHYBIYranI
18 6 8 17 syl2anc φIYranI
19 3 13 4 14 dihrnss KHLWHIYranIIYBaseDVecHKW
20 6 18 19 syl2anc φIYBaseDVecHKW
21 3 4 13 14 5 djhcl KHLWHIXBaseDVecHKWIYBaseDVecHKWIXJIYranI
22 6 16 20 21 syl12anc φIXJIYranI
23 3 4 dihcnvid2 KHLWHIXJIYranIII-1IXJIY=IXJIY
24 6 22 23 syl2anc φII-1IXJIY=IXJIY
25 10 24 eqtr4d φIX˙Y=II-1IXJIY
26 6 simpld φKHL
27 26 hllatd φKLat
28 1 2 latjcl KLatXBYBX˙YB
29 27 7 8 28 syl3anc φX˙YB
30 1 3 4 dihcnvcl KHLWHIXJIYranII-1IXJIYB
31 6 22 30 syl2anc φI-1IXJIYB
32 1 3 4 dih11 KHLWHX˙YBI-1IXJIYBIX˙Y=II-1IXJIYX˙Y=I-1IXJIY
33 6 29 31 32 syl3anc φIX˙Y=II-1IXJIYX˙Y=I-1IXJIY
34 25 33 mpbid φX˙Y=I-1IXJIY