Metamath Proof Explorer


Theorem djhljjN

Description: Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses djhlj.b B = Base K
djhlj.k ˙ = join K
djhlj.h H = LHyp K
djhlj.i I = DIsoH K W
djhlj.j J = joinH K W
djhljj.w φ K HL W H
djhljj.x φ X B
djhljj.y φ Y B
Assertion djhljjN φ X ˙ Y = I -1 I X J I Y

Proof

Step Hyp Ref Expression
1 djhlj.b B = Base K
2 djhlj.k ˙ = join K
3 djhlj.h H = LHyp K
4 djhlj.i I = DIsoH K W
5 djhlj.j J = joinH K W
6 djhljj.w φ K HL W H
7 djhljj.x φ X B
8 djhljj.y φ Y B
9 1 2 3 4 5 djhlj K HL W H X B Y B I X ˙ Y = I X J I Y
10 6 7 8 9 syl12anc φ I X ˙ Y = I X J I Y
11 1 3 4 dihcl K HL W H X B I X ran I
12 6 7 11 syl2anc φ I X ran I
13 eqid DVecH K W = DVecH K W
14 eqid Base DVecH K W = Base DVecH K W
15 3 13 4 14 dihrnss K HL W H I X ran I I X Base DVecH K W
16 6 12 15 syl2anc φ I X Base DVecH K W
17 1 3 4 dihcl K HL W H Y B I Y ran I
18 6 8 17 syl2anc φ I Y ran I
19 3 13 4 14 dihrnss K HL W H I Y ran I I Y Base DVecH K W
20 6 18 19 syl2anc φ I Y Base DVecH K W
21 3 4 13 14 5 djhcl K HL W H I X Base DVecH K W I Y Base DVecH K W I X J I Y ran I
22 6 16 20 21 syl12anc φ I X J I Y ran I
23 3 4 dihcnvid2 K HL W H I X J I Y ran I I I -1 I X J I Y = I X J I Y
24 6 22 23 syl2anc φ I I -1 I X J I Y = I X J I Y
25 10 24 eqtr4d φ I X ˙ Y = I I -1 I X J I Y
26 6 simpld φ K HL
27 26 hllatd φ K Lat
28 1 2 latjcl K Lat X B Y B X ˙ Y B
29 27 7 8 28 syl3anc φ X ˙ Y B
30 1 3 4 dihcnvcl K HL W H I X J I Y ran I I -1 I X J I Y B
31 6 22 30 syl2anc φ I -1 I X J I Y B
32 1 3 4 dih11 K HL W H X ˙ Y B I -1 I X J I Y B I X ˙ Y = I I -1 I X J I Y X ˙ Y = I -1 I X J I Y
33 6 29 31 32 syl3anc φ I X ˙ Y = I I -1 I X J I Y X ˙ Y = I -1 I X J I Y
34 25 33 mpbid φ X ˙ Y = I -1 I X J I Y