Metamath Proof Explorer


Theorem djhjlj

Description: DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014)

Ref Expression
Hypotheses djhj.k ˙ = join K
djhj.h H = LHyp K
djhj.i I = DIsoH K W
djhj.j J = joinH K W
djhj.w φ K HL W H
djhj.x φ X ran I
djhj.y φ Y ran I
Assertion djhjlj φ X J Y = I I -1 X ˙ I -1 Y

Proof

Step Hyp Ref Expression
1 djhj.k ˙ = join K
2 djhj.h H = LHyp K
3 djhj.i I = DIsoH K W
4 djhj.j J = joinH K W
5 djhj.w φ K HL W H
6 djhj.x φ X ran I
7 djhj.y φ Y ran I
8 eqid Base K = Base K
9 8 2 3 dihcnvcl K HL W H X ran I I -1 X Base K
10 5 6 9 syl2anc φ I -1 X Base K
11 8 2 3 dihcnvcl K HL W H Y ran I I -1 Y Base K
12 5 7 11 syl2anc φ I -1 Y Base K
13 8 1 2 3 4 djhlj K HL W H I -1 X Base K I -1 Y Base K I I -1 X ˙ I -1 Y = I I -1 X J I I -1 Y
14 5 10 12 13 syl12anc φ I I -1 X ˙ I -1 Y = I I -1 X J I I -1 Y
15 2 3 dihcnvid2 K HL W H X ran I I I -1 X = X
16 5 6 15 syl2anc φ I I -1 X = X
17 2 3 dihcnvid2 K HL W H Y ran I I I -1 Y = Y
18 5 7 17 syl2anc φ I I -1 Y = Y
19 16 18 oveq12d φ I I -1 X J I I -1 Y = X J Y
20 14 19 eqtr2d φ X J Y = I I -1 X ˙ I -1 Y