Step |
Hyp |
Ref |
Expression |
1 |
|
djhlj.b |
|
2 |
|
djhlj.k |
|
3 |
|
djhlj.h |
|
4 |
|
djhlj.i |
|
5 |
|
djhlj.j |
|
6 |
|
simpl |
|
7 |
|
simprl |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
1 3 4 8 9
|
dihss |
|
11 |
7 10
|
syldan |
|
12 |
|
simprr |
|
13 |
1 3 4 8 9
|
dihss |
|
14 |
12 13
|
syldan |
|
15 |
|
eqid |
|
16 |
3 8 9 15 5
|
djhval |
|
17 |
6 11 14 16
|
syl12anc |
|
18 |
|
hlop |
|
19 |
18
|
ad2antrr |
|
20 |
|
eqid |
|
21 |
1 20
|
opoccl |
|
22 |
19 7 21
|
syl2anc |
|
23 |
1 20
|
opoccl |
|
24 |
19 12 23
|
syl2anc |
|
25 |
|
eqid |
|
26 |
1 25 3 4
|
dihmeet |
|
27 |
6 22 24 26
|
syl3anc |
|
28 |
1 20 3 4 15
|
dochvalr2 |
|
29 |
7 28
|
syldan |
|
30 |
1 20 3 4 15
|
dochvalr2 |
|
31 |
12 30
|
syldan |
|
32 |
29 31
|
ineq12d |
|
33 |
27 32
|
eqtr4d |
|
34 |
33
|
fveq2d |
|
35 |
|
hllat |
|
36 |
35
|
ad2antrr |
|
37 |
1 25
|
latmcl |
|
38 |
36 22 24 37
|
syl3anc |
|
39 |
1 20 3 4 15
|
dochvalr2 |
|
40 |
38 39
|
syldan |
|
41 |
34 40
|
eqtr3d |
|
42 |
|
hlol |
|
43 |
42
|
ad2antrr |
|
44 |
1 2 25 20
|
oldmm4 |
|
45 |
43 7 12 44
|
syl3anc |
|
46 |
45
|
fveq2d |
|
47 |
17 41 46
|
3eqtrrd |
|