Metamath Proof Explorer


Theorem djhcl

Description: Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014)

Ref Expression
Hypotheses djhcl.h H=LHypK
djhcl.i I=DIsoHKW
djhcl.u U=DVecHKW
djhcl.v V=BaseU
djhcl.j ˙=joinHKW
Assertion djhcl KHLWHXVYVX˙YranI

Proof

Step Hyp Ref Expression
1 djhcl.h H=LHypK
2 djhcl.i I=DIsoHKW
3 djhcl.u U=DVecHKW
4 djhcl.v V=BaseU
5 djhcl.j ˙=joinHKW
6 eqid ocHKW=ocHKW
7 1 3 4 6 5 djhval KHLWHXVYVX˙Y=ocHKWocHKWXocHKWY
8 inss1 ocHKWXocHKWYocHKWX
9 1 2 3 4 6 dochcl KHLWHXVocHKWXranI
10 9 adantrr KHLWHXVYVocHKWXranI
11 1 3 2 4 dihrnss KHLWHocHKWXranIocHKWXV
12 10 11 syldan KHLWHXVYVocHKWXV
13 8 12 sstrid KHLWHXVYVocHKWXocHKWYV
14 1 2 3 4 6 dochcl KHLWHocHKWXocHKWYVocHKWocHKWXocHKWYranI
15 13 14 syldan KHLWHXVYVocHKWocHKWXocHKWYranI
16 7 15 eqeltrd KHLWHXVYVX˙YranI