Step |
Hyp |
Ref |
Expression |
1 |
|
djhlj.b |
|- B = ( Base ` K ) |
2 |
|
djhlj.k |
|- .\/ = ( join ` K ) |
3 |
|
djhlj.h |
|- H = ( LHyp ` K ) |
4 |
|
djhlj.i |
|- I = ( ( DIsoH ` K ) ` W ) |
5 |
|
djhlj.j |
|- J = ( ( joinH ` K ) ` W ) |
6 |
|
djhljj.w |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
djhljj.x |
|- ( ph -> X e. B ) |
8 |
|
djhljj.y |
|- ( ph -> Y e. B ) |
9 |
1 2 3 4 5
|
djhlj |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ Y e. B ) ) -> ( I ` ( X .\/ Y ) ) = ( ( I ` X ) J ( I ` Y ) ) ) |
10 |
6 7 8 9
|
syl12anc |
|- ( ph -> ( I ` ( X .\/ Y ) ) = ( ( I ` X ) J ( I ` Y ) ) ) |
11 |
1 3 4
|
dihcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. B ) -> ( I ` X ) e. ran I ) |
12 |
6 7 11
|
syl2anc |
|- ( ph -> ( I ` X ) e. ran I ) |
13 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
14 |
|
eqid |
|- ( Base ` ( ( DVecH ` K ) ` W ) ) = ( Base ` ( ( DVecH ` K ) ` W ) ) |
15 |
3 13 4 14
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( I ` X ) e. ran I ) -> ( I ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
16 |
6 12 15
|
syl2anc |
|- ( ph -> ( I ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
17 |
1 3 4
|
dihcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. B ) -> ( I ` Y ) e. ran I ) |
18 |
6 8 17
|
syl2anc |
|- ( ph -> ( I ` Y ) e. ran I ) |
19 |
3 13 4 14
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( I ` Y ) e. ran I ) -> ( I ` Y ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
20 |
6 18 19
|
syl2anc |
|- ( ph -> ( I ` Y ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) |
21 |
3 4 13 14 5
|
djhcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( I ` X ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) /\ ( I ` Y ) C_ ( Base ` ( ( DVecH ` K ) ` W ) ) ) ) -> ( ( I ` X ) J ( I ` Y ) ) e. ran I ) |
22 |
6 16 20 21
|
syl12anc |
|- ( ph -> ( ( I ` X ) J ( I ` Y ) ) e. ran I ) |
23 |
3 4
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( I ` X ) J ( I ` Y ) ) e. ran I ) -> ( I ` ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) = ( ( I ` X ) J ( I ` Y ) ) ) |
24 |
6 22 23
|
syl2anc |
|- ( ph -> ( I ` ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) = ( ( I ` X ) J ( I ` Y ) ) ) |
25 |
10 24
|
eqtr4d |
|- ( ph -> ( I ` ( X .\/ Y ) ) = ( I ` ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) ) |
26 |
6
|
simpld |
|- ( ph -> K e. HL ) |
27 |
26
|
hllatd |
|- ( ph -> K e. Lat ) |
28 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
29 |
27 7 8 28
|
syl3anc |
|- ( ph -> ( X .\/ Y ) e. B ) |
30 |
1 3 4
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( I ` X ) J ( I ` Y ) ) e. ran I ) -> ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) e. B ) |
31 |
6 22 30
|
syl2anc |
|- ( ph -> ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) e. B ) |
32 |
1 3 4
|
dih11 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X .\/ Y ) e. B /\ ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) e. B ) -> ( ( I ` ( X .\/ Y ) ) = ( I ` ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) <-> ( X .\/ Y ) = ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) ) |
33 |
6 29 31 32
|
syl3anc |
|- ( ph -> ( ( I ` ( X .\/ Y ) ) = ( I ` ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) <-> ( X .\/ Y ) = ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) ) |
34 |
25 33
|
mpbid |
|- ( ph -> ( X .\/ Y ) = ( `' I ` ( ( I ` X ) J ( I ` Y ) ) ) ) |