| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djhsumss.h |
|- H = ( LHyp ` K ) |
| 2 |
|
djhsumss.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
djhsumss.v |
|- V = ( Base ` U ) |
| 4 |
|
djhsumss.p |
|- .(+) = ( LSSum ` U ) |
| 5 |
|
djhsumss.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
| 6 |
|
djhsumss.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
djhsumss.x |
|- ( ph -> X C_ V ) |
| 8 |
|
djhsumss.y |
|- ( ph -> Y C_ V ) |
| 9 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 10 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 11 |
3 9 4 7 8 10
|
lsmssspx |
|- ( ph -> ( X .(+) Y ) C_ ( ( LSpan ` U ) ` ( X u. Y ) ) ) |
| 12 |
1 2 3 9 5 6 7 8
|
djhspss |
|- ( ph -> ( ( LSpan ` U ) ` ( X u. Y ) ) C_ ( X .\/ Y ) ) |
| 13 |
11 12
|
sstrd |
|- ( ph -> ( X .(+) Y ) C_ ( X .\/ Y ) ) |