Description: Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | djhsumss.h | |- H = ( LHyp ` K ) |
|
djhsumss.u | |- U = ( ( DVecH ` K ) ` W ) |
||
djhsumss.v | |- V = ( Base ` U ) |
||
djhsumss.p | |- .(+) = ( LSSum ` U ) |
||
djhsumss.j | |- .\/ = ( ( joinH ` K ) ` W ) |
||
djhsumss.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
djhsumss.x | |- ( ph -> X C_ V ) |
||
djhsumss.y | |- ( ph -> Y C_ V ) |
||
Assertion | djhsumss | |- ( ph -> ( X .(+) Y ) C_ ( X .\/ Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djhsumss.h | |- H = ( LHyp ` K ) |
|
2 | djhsumss.u | |- U = ( ( DVecH ` K ) ` W ) |
|
3 | djhsumss.v | |- V = ( Base ` U ) |
|
4 | djhsumss.p | |- .(+) = ( LSSum ` U ) |
|
5 | djhsumss.j | |- .\/ = ( ( joinH ` K ) ` W ) |
|
6 | djhsumss.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
7 | djhsumss.x | |- ( ph -> X C_ V ) |
|
8 | djhsumss.y | |- ( ph -> Y C_ V ) |
|
9 | eqid | |- ( LSpan ` U ) = ( LSpan ` U ) |
|
10 | 1 2 6 | dvhlmod | |- ( ph -> U e. LMod ) |
11 | 3 9 4 7 8 10 | lsmssspx | |- ( ph -> ( X .(+) Y ) C_ ( ( LSpan ` U ) ` ( X u. Y ) ) ) |
12 | 1 2 3 9 5 6 7 8 | djhspss | |- ( ph -> ( ( LSpan ` U ) ` ( X u. Y ) ) C_ ( X .\/ Y ) ) |
13 | 11 12 | sstrd | |- ( ph -> ( X .(+) Y ) C_ ( X .\/ Y ) ) |