Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
djhsumss
Next ⟩
dihsumssj
Metamath Proof Explorer
Ascii
Unicode
Theorem
djhsumss
Description:
Subspace sum is a subset of subspace join.
(Contributed by
NM
, 6-Aug-2014)
Ref
Expression
Hypotheses
djhsumss.h
⊢
H
=
LHyp
⁡
K
djhsumss.u
⊢
U
=
DVecH
⁡
K
⁡
W
djhsumss.v
⊢
V
=
Base
U
djhsumss.p
⊢
⊕
˙
=
LSSum
⁡
U
djhsumss.j
⊢
∨
˙
=
joinH
⁡
K
⁡
W
djhsumss.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
djhsumss.x
⊢
φ
→
X
⊆
V
djhsumss.y
⊢
φ
→
Y
⊆
V
Assertion
djhsumss
⊢
φ
→
X
⊕
˙
Y
⊆
X
∨
˙
Y
Proof
Step
Hyp
Ref
Expression
1
djhsumss.h
⊢
H
=
LHyp
⁡
K
2
djhsumss.u
⊢
U
=
DVecH
⁡
K
⁡
W
3
djhsumss.v
⊢
V
=
Base
U
4
djhsumss.p
⊢
⊕
˙
=
LSSum
⁡
U
5
djhsumss.j
⊢
∨
˙
=
joinH
⁡
K
⁡
W
6
djhsumss.k
⊢
φ
→
K
∈
HL
∧
W
∈
H
7
djhsumss.x
⊢
φ
→
X
⊆
V
8
djhsumss.y
⊢
φ
→
Y
⊆
V
9
eqid
⊢
LSpan
⁡
U
=
LSpan
⁡
U
10
1
2
6
dvhlmod
⊢
φ
→
U
∈
LMod
11
3
9
4
7
8
10
lsmssspx
⊢
φ
→
X
⊕
˙
Y
⊆
LSpan
⁡
U
⁡
X
∪
Y
12
1
2
3
9
5
6
7
8
djhspss
⊢
φ
→
LSpan
⁡
U
⁡
X
∪
Y
⊆
X
∨
˙
Y
13
11
12
sstrd
⊢
φ
→
X
⊕
˙
Y
⊆
X
∨
˙
Y