Metamath Proof Explorer


Theorem djhsumss

Description: Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014)

Ref Expression
Hypotheses djhsumss.h H = LHyp K
djhsumss.u U = DVecH K W
djhsumss.v V = Base U
djhsumss.p ˙ = LSSum U
djhsumss.j ˙ = joinH K W
djhsumss.k φ K HL W H
djhsumss.x φ X V
djhsumss.y φ Y V
Assertion djhsumss φ X ˙ Y X ˙ Y

Proof

Step Hyp Ref Expression
1 djhsumss.h H = LHyp K
2 djhsumss.u U = DVecH K W
3 djhsumss.v V = Base U
4 djhsumss.p ˙ = LSSum U
5 djhsumss.j ˙ = joinH K W
6 djhsumss.k φ K HL W H
7 djhsumss.x φ X V
8 djhsumss.y φ Y V
9 eqid LSpan U = LSpan U
10 1 2 6 dvhlmod φ U LMod
11 3 9 4 7 8 10 lsmssspx φ X ˙ Y LSpan U X Y
12 1 2 3 9 5 6 7 8 djhspss φ LSpan U X Y X ˙ Y
13 11 12 sstrd φ X ˙ Y X ˙ Y