| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djhcvat42.h |
|- H = ( LHyp ` K ) |
| 2 |
|
djhcvat42.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
djhcvat42.v |
|- V = ( Base ` U ) |
| 4 |
|
djhcvat42.o |
|- .0. = ( 0g ` U ) |
| 5 |
|
djhcvat42.n |
|- N = ( LSpan ` U ) |
| 6 |
|
djhcvat42.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 7 |
|
djhcvat42.j |
|- .\/ = ( ( joinH ` K ) ` W ) |
| 8 |
|
djhcvat42.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
djhcvat42.s |
|- ( ph -> S e. ran I ) |
| 10 |
|
djhcvat42.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 11 |
|
djhcvat42.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 12 |
8
|
simpld |
|- ( ph -> K e. HL ) |
| 13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 14 |
13 1 6
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. ran I ) -> ( `' I ` S ) e. ( Base ` K ) ) |
| 15 |
8 9 14
|
syl2anc |
|- ( ph -> ( `' I ` S ) e. ( Base ` K ) ) |
| 16 |
10
|
eldifad |
|- ( ph -> X e. V ) |
| 17 |
|
eldifsni |
|- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
| 18 |
10 17
|
syl |
|- ( ph -> X =/= .0. ) |
| 19 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 20 |
19 1 2 3 4 5 6
|
dihlspsnat |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V /\ X =/= .0. ) -> ( `' I ` ( N ` { X } ) ) e. ( Atoms ` K ) ) |
| 21 |
8 16 18 20
|
syl3anc |
|- ( ph -> ( `' I ` ( N ` { X } ) ) e. ( Atoms ` K ) ) |
| 22 |
11
|
eldifad |
|- ( ph -> Y e. V ) |
| 23 |
|
eldifsni |
|- ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) |
| 24 |
11 23
|
syl |
|- ( ph -> Y =/= .0. ) |
| 25 |
19 1 2 3 4 5 6
|
dihlspsnat |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. V /\ Y =/= .0. ) -> ( `' I ` ( N ` { Y } ) ) e. ( Atoms ` K ) ) |
| 26 |
8 22 24 25
|
syl3anc |
|- ( ph -> ( `' I ` ( N ` { Y } ) ) e. ( Atoms ` K ) ) |
| 27 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 28 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 29 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 30 |
13 27 28 29 19
|
cvrat42 |
|- ( ( K e. HL /\ ( ( `' I ` S ) e. ( Base ` K ) /\ ( `' I ` ( N ` { X } ) ) e. ( Atoms ` K ) /\ ( `' I ` ( N ` { Y } ) ) e. ( Atoms ` K ) ) ) -> ( ( ( `' I ` S ) =/= ( 0. ` K ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` S ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) -> E. r e. ( Atoms ` K ) ( r ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) ) |
| 31 |
12 15 21 26 30
|
syl13anc |
|- ( ph -> ( ( ( `' I ` S ) =/= ( 0. ` K ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` S ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) -> E. r e. ( Atoms ` K ) ( r ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) ) |
| 32 |
1 29 6 2 3 4 5 8 9
|
dih0sb |
|- ( ph -> ( S = { .0. } <-> ( `' I ` S ) = ( 0. ` K ) ) ) |
| 33 |
32
|
necon3bid |
|- ( ph -> ( S =/= { .0. } <-> ( `' I ` S ) =/= ( 0. ` K ) ) ) |
| 34 |
1 2 3 5 6
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. V ) -> ( N ` { X } ) e. ran I ) |
| 35 |
8 16 34
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ran I ) |
| 36 |
1 2 6 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. ran I ) -> S C_ V ) |
| 37 |
8 9 36
|
syl2anc |
|- ( ph -> S C_ V ) |
| 38 |
1 2 3 5 6
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. V ) -> ( N ` { Y } ) e. ran I ) |
| 39 |
8 22 38
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ran I ) |
| 40 |
1 2 6 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { Y } ) e. ran I ) -> ( N ` { Y } ) C_ V ) |
| 41 |
8 39 40
|
syl2anc |
|- ( ph -> ( N ` { Y } ) C_ V ) |
| 42 |
1 6 2 3 7
|
djhcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ V /\ ( N ` { Y } ) C_ V ) ) -> ( S .\/ ( N ` { Y } ) ) e. ran I ) |
| 43 |
8 37 41 42
|
syl12anc |
|- ( ph -> ( S .\/ ( N ` { Y } ) ) e. ran I ) |
| 44 |
27 1 6 8 35 43
|
dihcnvord |
|- ( ph -> ( ( `' I ` ( N ` { X } ) ) ( le ` K ) ( `' I ` ( S .\/ ( N ` { Y } ) ) ) <-> ( N ` { X } ) C_ ( S .\/ ( N ` { Y } ) ) ) ) |
| 45 |
28 1 6 7 8 9 39
|
djhj |
|- ( ph -> ( `' I ` ( S .\/ ( N ` { Y } ) ) ) = ( ( `' I ` S ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) |
| 46 |
45
|
breq2d |
|- ( ph -> ( ( `' I ` ( N ` { X } ) ) ( le ` K ) ( `' I ` ( S .\/ ( N ` { Y } ) ) ) <-> ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` S ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) |
| 47 |
44 46
|
bitr3d |
|- ( ph -> ( ( N ` { X } ) C_ ( S .\/ ( N ` { Y } ) ) <-> ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` S ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) |
| 48 |
33 47
|
anbi12d |
|- ( ph -> ( ( S =/= { .0. } /\ ( N ` { X } ) C_ ( S .\/ ( N ` { Y } ) ) ) <-> ( ( `' I ` S ) =/= ( 0. ` K ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` S ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) ) |
| 49 |
8
|
adantr |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) |
| 50 |
|
eldifi |
|- ( z e. ( V \ { .0. } ) -> z e. V ) |
| 51 |
50
|
adantl |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> z e. V ) |
| 52 |
|
eldifsni |
|- ( z e. ( V \ { .0. } ) -> z =/= .0. ) |
| 53 |
52
|
adantl |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> z =/= .0. ) |
| 54 |
19 1 2 3 4 5 6
|
dihlspsnat |
|- ( ( ( K e. HL /\ W e. H ) /\ z e. V /\ z =/= .0. ) -> ( `' I ` ( N ` { z } ) ) e. ( Atoms ` K ) ) |
| 55 |
49 51 53 54
|
syl3anc |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( `' I ` ( N ` { z } ) ) e. ( Atoms ` K ) ) |
| 56 |
19 1 2 3 4 5 6 8
|
dihatexv2 |
|- ( ph -> ( r e. ( Atoms ` K ) <-> E. z e. ( V \ { .0. } ) r = ( `' I ` ( N ` { z } ) ) ) ) |
| 57 |
|
breq1 |
|- ( r = ( `' I ` ( N ` { z } ) ) -> ( r ( le ` K ) ( `' I ` S ) <-> ( `' I ` ( N ` { z } ) ) ( le ` K ) ( `' I ` S ) ) ) |
| 58 |
|
oveq1 |
|- ( r = ( `' I ` ( N ` { z } ) ) -> ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) = ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) |
| 59 |
58
|
breq2d |
|- ( r = ( `' I ` ( N ` { z } ) ) -> ( ( `' I ` ( N ` { X } ) ) ( le ` K ) ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) <-> ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) |
| 60 |
57 59
|
anbi12d |
|- ( r = ( `' I ` ( N ` { z } ) ) -> ( ( r ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) <-> ( ( `' I ` ( N ` { z } ) ) ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) ) |
| 61 |
60
|
adantl |
|- ( ( ph /\ r = ( `' I ` ( N ` { z } ) ) ) -> ( ( r ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) <-> ( ( `' I ` ( N ` { z } ) ) ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) ) |
| 62 |
55 56 61
|
rexxfr2d |
|- ( ph -> ( E. r e. ( Atoms ` K ) ( r ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) <-> E. z e. ( V \ { .0. } ) ( ( `' I ` ( N ` { z } ) ) ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) ) |
| 63 |
1 2 3 5 6
|
dihlsprn |
|- ( ( ( K e. HL /\ W e. H ) /\ z e. V ) -> ( N ` { z } ) e. ran I ) |
| 64 |
49 51 63
|
syl2anc |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( N ` { z } ) e. ran I ) |
| 65 |
9
|
adantr |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> S e. ran I ) |
| 66 |
27 1 6 49 64 65
|
dihcnvord |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( ( `' I ` ( N ` { z } ) ) ( le ` K ) ( `' I ` S ) <-> ( N ` { z } ) C_ S ) ) |
| 67 |
39
|
adantr |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( N ` { Y } ) e. ran I ) |
| 68 |
28 1 6 7 49 64 67
|
djhj |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( `' I ` ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) = ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) |
| 69 |
68
|
breq2d |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( ( `' I ` ( N ` { X } ) ) ( le ` K ) ( `' I ` ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) <-> ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) |
| 70 |
16
|
adantr |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> X e. V ) |
| 71 |
49 70 34
|
syl2anc |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( N ` { X } ) e. ran I ) |
| 72 |
1 2 6 3
|
dihrnss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( N ` { z } ) e. ran I ) -> ( N ` { z } ) C_ V ) |
| 73 |
49 64 72
|
syl2anc |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( N ` { z } ) C_ V ) |
| 74 |
41
|
adantr |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( N ` { Y } ) C_ V ) |
| 75 |
1 6 2 3 7
|
djhcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( N ` { z } ) C_ V /\ ( N ` { Y } ) C_ V ) ) -> ( ( N ` { z } ) .\/ ( N ` { Y } ) ) e. ran I ) |
| 76 |
49 73 74 75
|
syl12anc |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( ( N ` { z } ) .\/ ( N ` { Y } ) ) e. ran I ) |
| 77 |
27 1 6 49 71 76
|
dihcnvord |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( ( `' I ` ( N ` { X } ) ) ( le ` K ) ( `' I ` ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) <-> ( N ` { X } ) C_ ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) ) |
| 78 |
69 77
|
bitr3d |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) <-> ( N ` { X } ) C_ ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) ) |
| 79 |
66 78
|
anbi12d |
|- ( ( ph /\ z e. ( V \ { .0. } ) ) -> ( ( ( `' I ` ( N ` { z } ) ) ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) <-> ( ( N ` { z } ) C_ S /\ ( N ` { X } ) C_ ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) ) ) |
| 80 |
79
|
rexbidva |
|- ( ph -> ( E. z e. ( V \ { .0. } ) ( ( `' I ` ( N ` { z } ) ) ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( ( `' I ` ( N ` { z } ) ) ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) <-> E. z e. ( V \ { .0. } ) ( ( N ` { z } ) C_ S /\ ( N ` { X } ) C_ ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) ) ) |
| 81 |
62 80
|
bitr2d |
|- ( ph -> ( E. z e. ( V \ { .0. } ) ( ( N ` { z } ) C_ S /\ ( N ` { X } ) C_ ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) <-> E. r e. ( Atoms ` K ) ( r ( le ` K ) ( `' I ` S ) /\ ( `' I ` ( N ` { X } ) ) ( le ` K ) ( r ( join ` K ) ( `' I ` ( N ` { Y } ) ) ) ) ) ) |
| 82 |
31 48 81
|
3imtr4d |
|- ( ph -> ( ( S =/= { .0. } /\ ( N ` { X } ) C_ ( S .\/ ( N ` { Y } ) ) ) -> E. z e. ( V \ { .0. } ) ( ( N ` { z } ) C_ S /\ ( N ` { X } ) C_ ( ( N ` { z } ) .\/ ( N ` { Y } ) ) ) ) ) |