| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djhj.k |
|- .\/ = ( join ` K ) |
| 2 |
|
djhj.h |
|- H = ( LHyp ` K ) |
| 3 |
|
djhj.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 4 |
|
djhj.j |
|- J = ( ( joinH ` K ) ` W ) |
| 5 |
|
djhj.w |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 6 |
|
djhj.x |
|- ( ph -> X e. ran I ) |
| 7 |
|
djhj.y |
|- ( ph -> Y e. ran I ) |
| 8 |
1 2 3 4 5 6 7
|
djhjlj |
|- ( ph -> ( X J Y ) = ( I ` ( ( `' I ` X ) .\/ ( `' I ` Y ) ) ) ) |
| 9 |
8
|
fveq2d |
|- ( ph -> ( `' I ` ( X J Y ) ) = ( `' I ` ( I ` ( ( `' I ` X ) .\/ ( `' I ` Y ) ) ) ) ) |
| 10 |
5
|
simpld |
|- ( ph -> K e. HL ) |
| 11 |
10
|
hllatd |
|- ( ph -> K e. Lat ) |
| 12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 13 |
12 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. ( Base ` K ) ) |
| 14 |
5 6 13
|
syl2anc |
|- ( ph -> ( `' I ` X ) e. ( Base ` K ) ) |
| 15 |
12 2 3
|
dihcnvcl |
|- ( ( ( K e. HL /\ W e. H ) /\ Y e. ran I ) -> ( `' I ` Y ) e. ( Base ` K ) ) |
| 16 |
5 7 15
|
syl2anc |
|- ( ph -> ( `' I ` Y ) e. ( Base ` K ) ) |
| 17 |
12 1
|
latjcl |
|- ( ( K e. Lat /\ ( `' I ` X ) e. ( Base ` K ) /\ ( `' I ` Y ) e. ( Base ` K ) ) -> ( ( `' I ` X ) .\/ ( `' I ` Y ) ) e. ( Base ` K ) ) |
| 18 |
11 14 16 17
|
syl3anc |
|- ( ph -> ( ( `' I ` X ) .\/ ( `' I ` Y ) ) e. ( Base ` K ) ) |
| 19 |
12 2 3
|
dihcnvid1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( `' I ` X ) .\/ ( `' I ` Y ) ) e. ( Base ` K ) ) -> ( `' I ` ( I ` ( ( `' I ` X ) .\/ ( `' I ` Y ) ) ) ) = ( ( `' I ` X ) .\/ ( `' I ` Y ) ) ) |
| 20 |
5 18 19
|
syl2anc |
|- ( ph -> ( `' I ` ( I ` ( ( `' I ` X ) .\/ ( `' I ` Y ) ) ) ) = ( ( `' I ` X ) .\/ ( `' I ` Y ) ) ) |
| 21 |
9 20
|
eqtrd |
|- ( ph -> ( `' I ` ( X J Y ) ) = ( ( `' I ` X ) .\/ ( `' I ` Y ) ) ) |