Metamath Proof Explorer


Theorem rexxfr2d

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypotheses ralxfr2d.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝑉 )
ralxfr2d.2 ( 𝜑 → ( 𝑥𝐵 ↔ ∃ 𝑦𝐶 𝑥 = 𝐴 ) )
ralxfr2d.3 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexxfr2d ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑦𝐶 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralxfr2d.1 ( ( 𝜑𝑦𝐶 ) → 𝐴𝑉 )
2 ralxfr2d.2 ( 𝜑 → ( 𝑥𝐵 ↔ ∃ 𝑦𝐶 𝑥 = 𝐴 ) )
3 ralxfr2d.3 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
4 3 notbid ( ( 𝜑𝑥 = 𝐴 ) → ( ¬ 𝜓 ↔ ¬ 𝜒 ) )
5 1 2 4 ralxfr2d ( 𝜑 → ( ∀ 𝑥𝐵 ¬ 𝜓 ↔ ∀ 𝑦𝐶 ¬ 𝜒 ) )
6 5 notbid ( 𝜑 → ( ¬ ∀ 𝑥𝐵 ¬ 𝜓 ↔ ¬ ∀ 𝑦𝐶 ¬ 𝜒 ) )
7 dfrex2 ( ∃ 𝑥𝐵 𝜓 ↔ ¬ ∀ 𝑥𝐵 ¬ 𝜓 )
8 dfrex2 ( ∃ 𝑦𝐶 𝜒 ↔ ¬ ∀ 𝑦𝐶 ¬ 𝜒 )
9 6 7 8 3bitr4g ( 𝜑 → ( ∃ 𝑥𝐵 𝜓 ↔ ∃ 𝑦𝐶 𝜒 ) )