Metamath Proof Explorer


Theorem rexxfr2d

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Hypotheses ralxfr2d.1 φyCAV
ralxfr2d.2 φxByCx=A
ralxfr2d.3 φx=Aψχ
Assertion rexxfr2d φxBψyCχ

Proof

Step Hyp Ref Expression
1 ralxfr2d.1 φyCAV
2 ralxfr2d.2 φxByCx=A
3 ralxfr2d.3 φx=Aψχ
4 3 notbid φx=A¬ψ¬χ
5 1 2 4 ralxfr2d φxB¬ψyC¬χ
6 5 notbid φ¬xB¬ψ¬yC¬χ
7 dfrex2 xBψ¬xB¬ψ
8 dfrex2 yCχ¬yC¬χ
9 6 7 8 3bitr4g φxBψyCχ