Metamath Proof Explorer


Theorem ralxfrd2

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . Variant of ralxfrd . (Contributed by Alexander van der Vekens, 25-Apr-2018)

Ref Expression
Hypotheses ralxfrd2.1 φyCAB
ralxfrd2.2 φxByCx=A
ralxfrd2.3 φyCx=Aψχ
Assertion ralxfrd2 φxBψyCχ

Proof

Step Hyp Ref Expression
1 ralxfrd2.1 φyCAB
2 ralxfrd2.2 φxByCx=A
3 ralxfrd2.3 φyCx=Aψχ
4 3 3expa φyCx=Aψχ
5 1 4 rspcdv φyCxBψχ
6 5 ralrimdva φxBψyCχ
7 r19.29 yCχyCx=AyCχx=A
8 3 ad4ant134 φxByCx=Aψχ
9 8 exbiri φxByCx=Aχψ
10 9 impcomd φxByCχx=Aψ
11 10 rexlimdva φxByCχx=Aψ
12 7 11 syl5 φxByCχyCx=Aψ
13 2 12 mpan2d φxByCχψ
14 13 ralrimdva φyCχxBψ
15 6 14 impbid φxBψyCχ