Metamath Proof Explorer


Theorem ralxfr2d

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014)

Ref Expression
Hypotheses ralxfr2d.1 φyCAV
ralxfr2d.2 φxByCx=A
ralxfr2d.3 φx=Aψχ
Assertion ralxfr2d φxBψyCχ

Proof

Step Hyp Ref Expression
1 ralxfr2d.1 φyCAV
2 ralxfr2d.2 φxByCx=A
3 ralxfr2d.3 φx=Aψχ
4 elisset AVxx=A
5 1 4 syl φyCxx=A
6 2 biimprd φyCx=AxB
7 r19.23v yCx=AxByCx=AxB
8 6 7 sylibr φyCx=AxB
9 8 r19.21bi φyCx=AxB
10 eleq1 x=AxBAB
11 9 10 mpbidi φyCx=AAB
12 11 exlimdv φyCxx=AAB
13 5 12 mpd φyCAB
14 2 biimpa φxByCx=A
15 13 14 3 ralxfrd φxBψyCχ