| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralxfr2d.1 |  |-  ( ( ph /\ y e. C ) -> A e. V ) | 
						
							| 2 |  | ralxfr2d.2 |  |-  ( ph -> ( x e. B <-> E. y e. C x = A ) ) | 
						
							| 3 |  | ralxfr2d.3 |  |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) ) | 
						
							| 4 |  | elisset |  |-  ( A e. V -> E. x x = A ) | 
						
							| 5 | 1 4 | syl |  |-  ( ( ph /\ y e. C ) -> E. x x = A ) | 
						
							| 6 | 2 | biimprd |  |-  ( ph -> ( E. y e. C x = A -> x e. B ) ) | 
						
							| 7 |  | r19.23v |  |-  ( A. y e. C ( x = A -> x e. B ) <-> ( E. y e. C x = A -> x e. B ) ) | 
						
							| 8 | 6 7 | sylibr |  |-  ( ph -> A. y e. C ( x = A -> x e. B ) ) | 
						
							| 9 | 8 | r19.21bi |  |-  ( ( ph /\ y e. C ) -> ( x = A -> x e. B ) ) | 
						
							| 10 |  | eleq1 |  |-  ( x = A -> ( x e. B <-> A e. B ) ) | 
						
							| 11 | 9 10 | mpbidi |  |-  ( ( ph /\ y e. C ) -> ( x = A -> A e. B ) ) | 
						
							| 12 | 11 | exlimdv |  |-  ( ( ph /\ y e. C ) -> ( E. x x = A -> A e. B ) ) | 
						
							| 13 | 5 12 | mpd |  |-  ( ( ph /\ y e. C ) -> A e. B ) | 
						
							| 14 | 2 | biimpa |  |-  ( ( ph /\ x e. B ) -> E. y e. C x = A ) | 
						
							| 15 | 13 14 3 | ralxfrd |  |-  ( ph -> ( A. x e. B ps <-> A. y e. C ch ) ) |