Metamath Proof Explorer


Theorem djhval2

Description: Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014)

Ref Expression
Hypotheses djhval.h 𝐻 = ( LHyp ‘ 𝐾 )
djhval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
djhval.v 𝑉 = ( Base ‘ 𝑈 )
djhval.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
djhval.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
Assertion djhval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) = ( ‘ ( ‘ ( 𝑋𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 djhval.h 𝐻 = ( LHyp ‘ 𝐾 )
2 djhval.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 djhval.v 𝑉 = ( Base ‘ 𝑈 )
4 djhval.o = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
5 djhval.j = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 )
6 1 2 3 4 5 djhval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( 𝑋 𝑌 ) = ( ‘ ( ( 𝑋 ) ∩ ( 𝑌 ) ) ) )
7 6 3impb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) = ( ‘ ( ( 𝑋 ) ∩ ( 𝑌 ) ) ) )
8 1 2 3 4 dochdmj1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( ‘ ( 𝑋𝑌 ) ) = ( ( 𝑋 ) ∩ ( 𝑌 ) ) )
9 8 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( ‘ ( ‘ ( 𝑋𝑌 ) ) ) = ( ‘ ( ( 𝑋 ) ∩ ( 𝑌 ) ) ) )
10 7 9 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) = ( ‘ ( ‘ ( 𝑋𝑌 ) ) ) )