Step |
Hyp |
Ref |
Expression |
1 |
|
djhval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
djhval.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
djhval.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
djhval.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
djhval.j |
⊢ ∨ = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
djhval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) ) → ( 𝑋 ∨ 𝑌 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
7 |
6
|
3impb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( 𝑋 ∨ 𝑌 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
8 |
1 2 3 4
|
dochdmj1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
10 |
7 9
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( 𝑋 ∨ 𝑌 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ) ) |