| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochdmj1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochdmj1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochdmj1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
dochdmj1.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 6 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → 𝑋 ⊆ 𝑉 ) |
| 7 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → 𝑌 ⊆ 𝑉 ) |
| 8 |
6 7
|
unssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( 𝑋 ∪ 𝑌 ) ⊆ 𝑉 ) |
| 9 |
|
ssun1 |
⊢ 𝑋 ⊆ ( 𝑋 ∪ 𝑌 ) |
| 10 |
9
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → 𝑋 ⊆ ( 𝑋 ∪ 𝑌 ) ) |
| 11 |
1 2 3 4
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∪ 𝑌 ) ⊆ 𝑉 ∧ 𝑋 ⊆ ( 𝑋 ∪ 𝑌 ) ) → ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 12 |
5 8 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 13 |
|
ssun2 |
⊢ 𝑌 ⊆ ( 𝑋 ∪ 𝑌 ) |
| 14 |
13
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → 𝑌 ⊆ ( 𝑋 ∪ 𝑌 ) ) |
| 15 |
1 2 3 4
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∪ 𝑌 ) ⊆ 𝑉 ∧ 𝑌 ⊆ ( 𝑋 ∪ 𝑌 ) ) → ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑌 ) ) |
| 16 |
5 8 14 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑌 ) ) |
| 17 |
12 16
|
ssind |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ⊆ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) |
| 18 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 19 |
1 18 2 3 4
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 20 |
19
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 21 |
1 18 2 3 4
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑌 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 22 |
21
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑌 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 23 |
1 18
|
dihmeetcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ⊥ ‘ 𝑌 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 24 |
5 20 22 23
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 25 |
1 18 4
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) |
| 26 |
5 24 25
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) |
| 27 |
1 2 3 4
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 28 |
27
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ) |
| 29 |
|
ssinss1 |
⊢ ( ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝑉 ) |
| 30 |
28 29
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝑉 ) |
| 31 |
1 2 3 4
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ⊆ 𝑉 ) |
| 32 |
5 30 31
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ⊆ 𝑉 ) |
| 33 |
1 2 3 4
|
dochocss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 34 |
33
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 35 |
1 2 3 4
|
dochocss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ) → 𝑌 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 36 |
35
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → 𝑌 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) |
| 37 |
|
unss12 |
⊢ ( ( 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∧ 𝑌 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) → ( 𝑋 ∪ 𝑌 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 38 |
34 36 37
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( 𝑋 ∪ 𝑌 ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 39 |
|
inss1 |
⊢ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) |
| 40 |
39
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) |
| 41 |
1 2 3 4
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑋 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 42 |
5 28 40 41
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 43 |
1 2 3 4
|
dochssv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝑉 ) |
| 44 |
43
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ 𝑌 ) ⊆ 𝑉 ) |
| 45 |
|
inss2 |
⊢ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑌 ) |
| 46 |
45
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑌 ) ) |
| 47 |
1 2 3 4
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑌 ) ⊆ 𝑉 ∧ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ 𝑌 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 48 |
5 44 46 47
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 49 |
42 48
|
unssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∪ ( ⊥ ‘ ( ⊥ ‘ 𝑌 ) ) ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 50 |
38 49
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( 𝑋 ∪ 𝑌 ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) |
| 51 |
1 2 3 4
|
dochss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ⊆ 𝑉 ∧ ( 𝑋 ∪ 𝑌 ) ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) ⊆ ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
| 52 |
5 32 50 51
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) ) ⊆ ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
| 53 |
26 52
|
eqsstrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ⊆ ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) ) |
| 54 |
17 53
|
eqssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑉 ∧ 𝑌 ⊆ 𝑉 ) → ( ⊥ ‘ ( 𝑋 ∪ 𝑌 ) ) = ( ( ⊥ ‘ 𝑋 ) ∩ ( ⊥ ‘ 𝑌 ) ) ) |