| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochnoncon.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dochnoncon.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dochnoncon.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑈 ) |
| 4 |
|
dochnoncon.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 5 |
|
dochnoncon.o |
⊢ ⊥ = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 7 |
6 3
|
lssss |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ⊆ ( Base ‘ 𝑈 ) ) |
| 8 |
1 2 6 5
|
dochocss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑈 ) ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 9 |
7 8
|
sylan2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 10 |
9
|
ssrind |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ⊆ ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∩ ( ⊥ ‘ 𝑋 ) ) ) |
| 11 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 13 |
|
eqid |
⊢ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 15 |
12 1 13 2 14
|
dihf11 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) ) |
| 17 |
|
f1f1orn |
⊢ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1→ ( LSubSp ‘ 𝑈 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 19 |
1 13 2 6 5
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 20 |
7 19
|
sylan2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 21 |
1 2 13 14
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 22 |
20 21
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ⊥ ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 23 |
6 14
|
lssss |
⊢ ( ( ⊥ ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) → ( ⊥ ‘ 𝑋 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ⊥ ‘ 𝑋 ) ⊆ ( Base ‘ 𝑈 ) ) |
| 25 |
1 13 2 6 5
|
dochcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ⊆ ( Base ‘ 𝑈 ) ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 26 |
24 25
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 27 |
|
f1ocnvdm |
⊢ ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) : ( Base ‘ 𝐾 ) –1-1-onto→ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
18 26 27
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 30 |
29
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → 𝐾 ∈ OP ) |
| 31 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 32 |
12 31
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
30 28 32
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 34 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 35 |
12 34 1 13
|
dihmeet |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) = ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ∩ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) ) |
| 36 |
11 28 33 35
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) = ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ∩ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) ) |
| 37 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 38 |
12 31 34 37
|
opnoncon |
⊢ ( ( 𝐾 ∈ OP ∧ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 39 |
30 28 38
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 40 |
39
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0. ‘ 𝐾 ) ) ) |
| 41 |
36 40
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ∩ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0. ‘ 𝐾 ) ) ) |
| 42 |
1 13
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 43 |
26 42
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) = ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) |
| 44 |
31 1 13 5
|
dochvalr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
| 45 |
26 44
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) |
| 46 |
1 13 5
|
dochoc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 47 |
20 46
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 48 |
45 47
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) = ( ⊥ ‘ 𝑋 ) ) |
| 49 |
43 48
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ∩ ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( oc ‘ 𝐾 ) ‘ ( ◡ ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ) ) ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∩ ( ⊥ ‘ 𝑋 ) ) ) |
| 50 |
37 1 13 2 4
|
dih0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 0. ‘ 𝐾 ) ) = { 0 } ) |
| 52 |
41 49 51
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝑋 ) ) ∩ ( ⊥ ‘ 𝑋 ) ) = { 0 } ) |
| 53 |
10 52
|
sseqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ⊆ { 0 } ) |
| 54 |
1 2 11
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑈 ∈ LMod ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 56 |
1 2 13 3
|
dihrnlss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ⊥ ‘ 𝑋 ) ∈ ran ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 57 |
20 56
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) |
| 58 |
3
|
lssincl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝑆 ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
| 59 |
54 55 57 58
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) |
| 60 |
4 3
|
lss0ss |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ∈ 𝑆 ) → { 0 } ⊆ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ) |
| 61 |
54 59 60
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → { 0 } ⊆ ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) ) |
| 62 |
53 61
|
eqssd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑆 ) → ( 𝑋 ∩ ( ⊥ ‘ 𝑋 ) ) = { 0 } ) |