Metamath Proof Explorer
Description: Add right intersection to subclass relation. (Contributed by Glauco
Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypothesis |
ssrind.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
|
Assertion |
ssrind |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssrind.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
ssrin |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ 𝐶 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) |