Metamath Proof Explorer


Theorem ssrind

Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis ssrind.1 ( 𝜑𝐴𝐵 )
Assertion ssrind ( 𝜑 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssrind.1 ( 𝜑𝐴𝐵 )
2 ssrin ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
3 1 2 syl ( 𝜑 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )