Metamath Proof Explorer


Theorem ssrind

Description: Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis ssrind.1
|- ( ph -> A C_ B )
Assertion ssrind
|- ( ph -> ( A i^i C ) C_ ( B i^i C ) )

Proof

Step Hyp Ref Expression
1 ssrind.1
 |-  ( ph -> A C_ B )
2 ssrin
 |-  ( A C_ B -> ( A i^i C ) C_ ( B i^i C ) )
3 1 2 syl
 |-  ( ph -> ( A i^i C ) C_ ( B i^i C ) )