Description: Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochnoncon.h | |
|
dochnoncon.u | |
||
dochnoncon.s | |
||
dochnoncon.z | |
||
dochnoncon.o | |
||
Assertion | dochnoncon | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochnoncon.h | |
|
2 | dochnoncon.u | |
|
3 | dochnoncon.s | |
|
4 | dochnoncon.z | |
|
5 | dochnoncon.o | |
|
6 | eqid | |
|
7 | 6 3 | lssss | |
8 | 1 2 6 5 | dochocss | |
9 | 7 8 | sylan2 | |
10 | 9 | ssrind | |
11 | simpl | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 12 1 13 2 14 | dihf11 | |
16 | 15 | adantr | |
17 | f1f1orn | |
|
18 | 16 17 | syl | |
19 | 1 13 2 6 5 | dochcl | |
20 | 7 19 | sylan2 | |
21 | 1 2 13 14 | dihrnlss | |
22 | 20 21 | syldan | |
23 | 6 14 | lssss | |
24 | 22 23 | syl | |
25 | 1 13 2 6 5 | dochcl | |
26 | 24 25 | syldan | |
27 | f1ocnvdm | |
|
28 | 18 26 27 | syl2anc | |
29 | hlop | |
|
30 | 29 | ad2antrr | |
31 | eqid | |
|
32 | 12 31 | opoccl | |
33 | 30 28 32 | syl2anc | |
34 | eqid | |
|
35 | 12 34 1 13 | dihmeet | |
36 | 11 28 33 35 | syl3anc | |
37 | eqid | |
|
38 | 12 31 34 37 | opnoncon | |
39 | 30 28 38 | syl2anc | |
40 | 39 | fveq2d | |
41 | 36 40 | eqtr3d | |
42 | 1 13 | dihcnvid2 | |
43 | 26 42 | syldan | |
44 | 31 1 13 5 | dochvalr | |
45 | 26 44 | syldan | |
46 | 1 13 5 | dochoc | |
47 | 20 46 | syldan | |
48 | 45 47 | eqtr3d | |
49 | 43 48 | ineq12d | |
50 | 37 1 13 2 4 | dih0 | |
51 | 50 | adantr | |
52 | 41 49 51 | 3eqtr3d | |
53 | 10 52 | sseqtrd | |
54 | 1 2 11 | dvhlmod | |
55 | simpr | |
|
56 | 1 2 13 3 | dihrnlss | |
57 | 20 56 | syldan | |
58 | 3 | lssincl | |
59 | 54 55 57 58 | syl3anc | |
60 | 4 3 | lss0ss | |
61 | 54 59 60 | syl2anc | |
62 | 53 61 | eqssd | |