| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochnoncon.h |
|
| 2 |
|
dochnoncon.u |
|
| 3 |
|
dochnoncon.s |
|
| 4 |
|
dochnoncon.z |
|
| 5 |
|
dochnoncon.o |
|
| 6 |
|
eqid |
|
| 7 |
6 3
|
lssss |
|
| 8 |
1 2 6 5
|
dochocss |
|
| 9 |
7 8
|
sylan2 |
|
| 10 |
9
|
ssrind |
|
| 11 |
|
simpl |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
12 1 13 2 14
|
dihf11 |
|
| 16 |
15
|
adantr |
|
| 17 |
|
f1f1orn |
|
| 18 |
16 17
|
syl |
|
| 19 |
1 13 2 6 5
|
dochcl |
|
| 20 |
7 19
|
sylan2 |
|
| 21 |
1 2 13 14
|
dihrnlss |
|
| 22 |
20 21
|
syldan |
|
| 23 |
6 14
|
lssss |
|
| 24 |
22 23
|
syl |
|
| 25 |
1 13 2 6 5
|
dochcl |
|
| 26 |
24 25
|
syldan |
|
| 27 |
|
f1ocnvdm |
|
| 28 |
18 26 27
|
syl2anc |
|
| 29 |
|
hlop |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
|
eqid |
|
| 32 |
12 31
|
opoccl |
|
| 33 |
30 28 32
|
syl2anc |
|
| 34 |
|
eqid |
|
| 35 |
12 34 1 13
|
dihmeet |
|
| 36 |
11 28 33 35
|
syl3anc |
|
| 37 |
|
eqid |
|
| 38 |
12 31 34 37
|
opnoncon |
|
| 39 |
30 28 38
|
syl2anc |
|
| 40 |
39
|
fveq2d |
|
| 41 |
36 40
|
eqtr3d |
|
| 42 |
1 13
|
dihcnvid2 |
|
| 43 |
26 42
|
syldan |
|
| 44 |
31 1 13 5
|
dochvalr |
|
| 45 |
26 44
|
syldan |
|
| 46 |
1 13 5
|
dochoc |
|
| 47 |
20 46
|
syldan |
|
| 48 |
45 47
|
eqtr3d |
|
| 49 |
43 48
|
ineq12d |
|
| 50 |
37 1 13 2 4
|
dih0 |
|
| 51 |
50
|
adantr |
|
| 52 |
41 49 51
|
3eqtr3d |
|
| 53 |
10 52
|
sseqtrd |
|
| 54 |
1 2 11
|
dvhlmod |
|
| 55 |
|
simpr |
|
| 56 |
1 2 13 3
|
dihrnlss |
|
| 57 |
20 56
|
syldan |
|
| 58 |
3
|
lssincl |
|
| 59 |
54 55 57 58
|
syl3anc |
|
| 60 |
4 3
|
lss0ss |
|
| 61 |
54 59 60
|
syl2anc |
|
| 62 |
53 61
|
eqssd |
|