Metamath Proof Explorer


Theorem dochnoncon

Description: Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses dochnoncon.h H = LHyp K
dochnoncon.u U = DVecH K W
dochnoncon.s S = LSubSp U
dochnoncon.z 0 ˙ = 0 U
dochnoncon.o ˙ = ocH K W
Assertion dochnoncon K HL W H X S X ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 dochnoncon.h H = LHyp K
2 dochnoncon.u U = DVecH K W
3 dochnoncon.s S = LSubSp U
4 dochnoncon.z 0 ˙ = 0 U
5 dochnoncon.o ˙ = ocH K W
6 eqid Base U = Base U
7 6 3 lssss X S X Base U
8 1 2 6 5 dochocss K HL W H X Base U X ˙ ˙ X
9 7 8 sylan2 K HL W H X S X ˙ ˙ X
10 9 ssrind K HL W H X S X ˙ X ˙ ˙ X ˙ X
11 simpl K HL W H X S K HL W H
12 eqid Base K = Base K
13 eqid DIsoH K W = DIsoH K W
14 eqid LSubSp U = LSubSp U
15 12 1 13 2 14 dihf11 K HL W H DIsoH K W : Base K 1-1 LSubSp U
16 15 adantr K HL W H X S DIsoH K W : Base K 1-1 LSubSp U
17 f1f1orn DIsoH K W : Base K 1-1 LSubSp U DIsoH K W : Base K 1-1 onto ran DIsoH K W
18 16 17 syl K HL W H X S DIsoH K W : Base K 1-1 onto ran DIsoH K W
19 1 13 2 6 5 dochcl K HL W H X Base U ˙ X ran DIsoH K W
20 7 19 sylan2 K HL W H X S ˙ X ran DIsoH K W
21 1 2 13 14 dihrnlss K HL W H ˙ X ran DIsoH K W ˙ X LSubSp U
22 20 21 syldan K HL W H X S ˙ X LSubSp U
23 6 14 lssss ˙ X LSubSp U ˙ X Base U
24 22 23 syl K HL W H X S ˙ X Base U
25 1 13 2 6 5 dochcl K HL W H ˙ X Base U ˙ ˙ X ran DIsoH K W
26 24 25 syldan K HL W H X S ˙ ˙ X ran DIsoH K W
27 f1ocnvdm DIsoH K W : Base K 1-1 onto ran DIsoH K W ˙ ˙ X ran DIsoH K W DIsoH K W -1 ˙ ˙ X Base K
28 18 26 27 syl2anc K HL W H X S DIsoH K W -1 ˙ ˙ X Base K
29 hlop K HL K OP
30 29 ad2antrr K HL W H X S K OP
31 eqid oc K = oc K
32 12 31 opoccl K OP DIsoH K W -1 ˙ ˙ X Base K oc K DIsoH K W -1 ˙ ˙ X Base K
33 30 28 32 syl2anc K HL W H X S oc K DIsoH K W -1 ˙ ˙ X Base K
34 eqid meet K = meet K
35 12 34 1 13 dihmeet K HL W H DIsoH K W -1 ˙ ˙ X Base K oc K DIsoH K W -1 ˙ ˙ X Base K DIsoH K W DIsoH K W -1 ˙ ˙ X meet K oc K DIsoH K W -1 ˙ ˙ X = DIsoH K W DIsoH K W -1 ˙ ˙ X DIsoH K W oc K DIsoH K W -1 ˙ ˙ X
36 11 28 33 35 syl3anc K HL W H X S DIsoH K W DIsoH K W -1 ˙ ˙ X meet K oc K DIsoH K W -1 ˙ ˙ X = DIsoH K W DIsoH K W -1 ˙ ˙ X DIsoH K W oc K DIsoH K W -1 ˙ ˙ X
37 eqid 0. K = 0. K
38 12 31 34 37 opnoncon K OP DIsoH K W -1 ˙ ˙ X Base K DIsoH K W -1 ˙ ˙ X meet K oc K DIsoH K W -1 ˙ ˙ X = 0. K
39 30 28 38 syl2anc K HL W H X S DIsoH K W -1 ˙ ˙ X meet K oc K DIsoH K W -1 ˙ ˙ X = 0. K
40 39 fveq2d K HL W H X S DIsoH K W DIsoH K W -1 ˙ ˙ X meet K oc K DIsoH K W -1 ˙ ˙ X = DIsoH K W 0. K
41 36 40 eqtr3d K HL W H X S DIsoH K W DIsoH K W -1 ˙ ˙ X DIsoH K W oc K DIsoH K W -1 ˙ ˙ X = DIsoH K W 0. K
42 1 13 dihcnvid2 K HL W H ˙ ˙ X ran DIsoH K W DIsoH K W DIsoH K W -1 ˙ ˙ X = ˙ ˙ X
43 26 42 syldan K HL W H X S DIsoH K W DIsoH K W -1 ˙ ˙ X = ˙ ˙ X
44 31 1 13 5 dochvalr K HL W H ˙ ˙ X ran DIsoH K W ˙ ˙ ˙ X = DIsoH K W oc K DIsoH K W -1 ˙ ˙ X
45 26 44 syldan K HL W H X S ˙ ˙ ˙ X = DIsoH K W oc K DIsoH K W -1 ˙ ˙ X
46 1 13 5 dochoc K HL W H ˙ X ran DIsoH K W ˙ ˙ ˙ X = ˙ X
47 20 46 syldan K HL W H X S ˙ ˙ ˙ X = ˙ X
48 45 47 eqtr3d K HL W H X S DIsoH K W oc K DIsoH K W -1 ˙ ˙ X = ˙ X
49 43 48 ineq12d K HL W H X S DIsoH K W DIsoH K W -1 ˙ ˙ X DIsoH K W oc K DIsoH K W -1 ˙ ˙ X = ˙ ˙ X ˙ X
50 37 1 13 2 4 dih0 K HL W H DIsoH K W 0. K = 0 ˙
51 50 adantr K HL W H X S DIsoH K W 0. K = 0 ˙
52 41 49 51 3eqtr3d K HL W H X S ˙ ˙ X ˙ X = 0 ˙
53 10 52 sseqtrd K HL W H X S X ˙ X 0 ˙
54 1 2 11 dvhlmod K HL W H X S U LMod
55 simpr K HL W H X S X S
56 1 2 13 3 dihrnlss K HL W H ˙ X ran DIsoH K W ˙ X S
57 20 56 syldan K HL W H X S ˙ X S
58 3 lssincl U LMod X S ˙ X S X ˙ X S
59 54 55 57 58 syl3anc K HL W H X S X ˙ X S
60 4 3 lss0ss U LMod X ˙ X S 0 ˙ X ˙ X
61 54 59 60 syl2anc K HL W H X S 0 ˙ X ˙ X
62 53 61 eqssd K HL W H X S X ˙ X = 0 ˙