Metamath Proof Explorer


Theorem dochnoncon

Description: Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014)

Ref Expression
Hypotheses dochnoncon.h H=LHypK
dochnoncon.u U=DVecHKW
dochnoncon.s S=LSubSpU
dochnoncon.z 0˙=0U
dochnoncon.o ˙=ocHKW
Assertion dochnoncon KHLWHXSX˙X=0˙

Proof

Step Hyp Ref Expression
1 dochnoncon.h H=LHypK
2 dochnoncon.u U=DVecHKW
3 dochnoncon.s S=LSubSpU
4 dochnoncon.z 0˙=0U
5 dochnoncon.o ˙=ocHKW
6 eqid BaseU=BaseU
7 6 3 lssss XSXBaseU
8 1 2 6 5 dochocss KHLWHXBaseUX˙˙X
9 7 8 sylan2 KHLWHXSX˙˙X
10 9 ssrind KHLWHXSX˙X˙˙X˙X
11 simpl KHLWHXSKHLWH
12 eqid BaseK=BaseK
13 eqid DIsoHKW=DIsoHKW
14 eqid LSubSpU=LSubSpU
15 12 1 13 2 14 dihf11 KHLWHDIsoHKW:BaseK1-1LSubSpU
16 15 adantr KHLWHXSDIsoHKW:BaseK1-1LSubSpU
17 f1f1orn DIsoHKW:BaseK1-1LSubSpUDIsoHKW:BaseK1-1 ontoranDIsoHKW
18 16 17 syl KHLWHXSDIsoHKW:BaseK1-1 ontoranDIsoHKW
19 1 13 2 6 5 dochcl KHLWHXBaseU˙XranDIsoHKW
20 7 19 sylan2 KHLWHXS˙XranDIsoHKW
21 1 2 13 14 dihrnlss KHLWH˙XranDIsoHKW˙XLSubSpU
22 20 21 syldan KHLWHXS˙XLSubSpU
23 6 14 lssss ˙XLSubSpU˙XBaseU
24 22 23 syl KHLWHXS˙XBaseU
25 1 13 2 6 5 dochcl KHLWH˙XBaseU˙˙XranDIsoHKW
26 24 25 syldan KHLWHXS˙˙XranDIsoHKW
27 f1ocnvdm DIsoHKW:BaseK1-1 ontoranDIsoHKW˙˙XranDIsoHKWDIsoHKW-1˙˙XBaseK
28 18 26 27 syl2anc KHLWHXSDIsoHKW-1˙˙XBaseK
29 hlop KHLKOP
30 29 ad2antrr KHLWHXSKOP
31 eqid ocK=ocK
32 12 31 opoccl KOPDIsoHKW-1˙˙XBaseKocKDIsoHKW-1˙˙XBaseK
33 30 28 32 syl2anc KHLWHXSocKDIsoHKW-1˙˙XBaseK
34 eqid meetK=meetK
35 12 34 1 13 dihmeet KHLWHDIsoHKW-1˙˙XBaseKocKDIsoHKW-1˙˙XBaseKDIsoHKWDIsoHKW-1˙˙XmeetKocKDIsoHKW-1˙˙X=DIsoHKWDIsoHKW-1˙˙XDIsoHKWocKDIsoHKW-1˙˙X
36 11 28 33 35 syl3anc KHLWHXSDIsoHKWDIsoHKW-1˙˙XmeetKocKDIsoHKW-1˙˙X=DIsoHKWDIsoHKW-1˙˙XDIsoHKWocKDIsoHKW-1˙˙X
37 eqid 0.K=0.K
38 12 31 34 37 opnoncon KOPDIsoHKW-1˙˙XBaseKDIsoHKW-1˙˙XmeetKocKDIsoHKW-1˙˙X=0.K
39 30 28 38 syl2anc KHLWHXSDIsoHKW-1˙˙XmeetKocKDIsoHKW-1˙˙X=0.K
40 39 fveq2d KHLWHXSDIsoHKWDIsoHKW-1˙˙XmeetKocKDIsoHKW-1˙˙X=DIsoHKW0.K
41 36 40 eqtr3d KHLWHXSDIsoHKWDIsoHKW-1˙˙XDIsoHKWocKDIsoHKW-1˙˙X=DIsoHKW0.K
42 1 13 dihcnvid2 KHLWH˙˙XranDIsoHKWDIsoHKWDIsoHKW-1˙˙X=˙˙X
43 26 42 syldan KHLWHXSDIsoHKWDIsoHKW-1˙˙X=˙˙X
44 31 1 13 5 dochvalr KHLWH˙˙XranDIsoHKW˙˙˙X=DIsoHKWocKDIsoHKW-1˙˙X
45 26 44 syldan KHLWHXS˙˙˙X=DIsoHKWocKDIsoHKW-1˙˙X
46 1 13 5 dochoc KHLWH˙XranDIsoHKW˙˙˙X=˙X
47 20 46 syldan KHLWHXS˙˙˙X=˙X
48 45 47 eqtr3d KHLWHXSDIsoHKWocKDIsoHKW-1˙˙X=˙X
49 43 48 ineq12d KHLWHXSDIsoHKWDIsoHKW-1˙˙XDIsoHKWocKDIsoHKW-1˙˙X=˙˙X˙X
50 37 1 13 2 4 dih0 KHLWHDIsoHKW0.K=0˙
51 50 adantr KHLWHXSDIsoHKW0.K=0˙
52 41 49 51 3eqtr3d KHLWHXS˙˙X˙X=0˙
53 10 52 sseqtrd KHLWHXSX˙X0˙
54 1 2 11 dvhlmod KHLWHXSULMod
55 simpr KHLWHXSXS
56 1 2 13 3 dihrnlss KHLWH˙XranDIsoHKW˙XS
57 20 56 syldan KHLWHXS˙XS
58 3 lssincl ULModXS˙XSX˙XS
59 54 55 57 58 syl3anc KHLWHXSX˙XS
60 4 3 lss0ss ULModX˙XS0˙X˙X
61 54 59 60 syl2anc KHLWHXS0˙X˙X
62 53 61 eqssd KHLWHXSX˙X=0˙