Step |
Hyp |
Ref |
Expression |
1 |
|
dochnoncon.h |
|
2 |
|
dochnoncon.u |
|
3 |
|
dochnoncon.s |
|
4 |
|
dochnoncon.z |
|
5 |
|
dochnoncon.o |
|
6 |
|
eqid |
|
7 |
6 3
|
lssss |
|
8 |
1 2 6 5
|
dochocss |
|
9 |
7 8
|
sylan2 |
|
10 |
9
|
ssrind |
|
11 |
|
simpl |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
12 1 13 2 14
|
dihf11 |
|
16 |
15
|
adantr |
|
17 |
|
f1f1orn |
|
18 |
16 17
|
syl |
|
19 |
1 13 2 6 5
|
dochcl |
|
20 |
7 19
|
sylan2 |
|
21 |
1 2 13 14
|
dihrnlss |
|
22 |
20 21
|
syldan |
|
23 |
6 14
|
lssss |
|
24 |
22 23
|
syl |
|
25 |
1 13 2 6 5
|
dochcl |
|
26 |
24 25
|
syldan |
|
27 |
|
f1ocnvdm |
|
28 |
18 26 27
|
syl2anc |
|
29 |
|
hlop |
|
30 |
29
|
ad2antrr |
|
31 |
|
eqid |
|
32 |
12 31
|
opoccl |
|
33 |
30 28 32
|
syl2anc |
|
34 |
|
eqid |
|
35 |
12 34 1 13
|
dihmeet |
|
36 |
11 28 33 35
|
syl3anc |
|
37 |
|
eqid |
|
38 |
12 31 34 37
|
opnoncon |
|
39 |
30 28 38
|
syl2anc |
|
40 |
39
|
fveq2d |
|
41 |
36 40
|
eqtr3d |
|
42 |
1 13
|
dihcnvid2 |
|
43 |
26 42
|
syldan |
|
44 |
31 1 13 5
|
dochvalr |
|
45 |
26 44
|
syldan |
|
46 |
1 13 5
|
dochoc |
|
47 |
20 46
|
syldan |
|
48 |
45 47
|
eqtr3d |
|
49 |
43 48
|
ineq12d |
|
50 |
37 1 13 2 4
|
dih0 |
|
51 |
50
|
adantr |
|
52 |
41 49 51
|
3eqtr3d |
|
53 |
10 52
|
sseqtrd |
|
54 |
1 2 11
|
dvhlmod |
|
55 |
|
simpr |
|
56 |
1 2 13 3
|
dihrnlss |
|
57 |
20 56
|
syldan |
|
58 |
3
|
lssincl |
|
59 |
54 55 57 58
|
syl3anc |
|
60 |
4 3
|
lss0ss |
|
61 |
54 59 60
|
syl2anc |
|
62 |
53 61
|
eqssd |
|