| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochnoncon.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochnoncon.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dochnoncon.s |
|- S = ( LSubSp ` U ) |
| 4 |
|
dochnoncon.z |
|- .0. = ( 0g ` U ) |
| 5 |
|
dochnoncon.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 6 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 7 |
6 3
|
lssss |
|- ( X e. S -> X C_ ( Base ` U ) ) |
| 8 |
1 2 6 5
|
dochocss |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ ( Base ` U ) ) -> X C_ ( ._|_ ` ( ._|_ ` X ) ) ) |
| 9 |
7 8
|
sylan2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> X C_ ( ._|_ ` ( ._|_ ` X ) ) ) |
| 10 |
9
|
ssrind |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( X i^i ( ._|_ ` X ) ) C_ ( ( ._|_ ` ( ._|_ ` X ) ) i^i ( ._|_ ` X ) ) ) |
| 11 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( K e. HL /\ W e. H ) ) |
| 12 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 13 |
|
eqid |
|- ( ( DIsoH ` K ) ` W ) = ( ( DIsoH ` K ) ` W ) |
| 14 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 15 |
12 1 13 2 14
|
dihf11 |
|- ( ( K e. HL /\ W e. H ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-> ( LSubSp ` U ) ) |
| 16 |
15
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-> ( LSubSp ` U ) ) |
| 17 |
|
f1f1orn |
|- ( ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-> ( LSubSp ` U ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) ) |
| 18 |
16 17
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) ) |
| 19 |
1 13 2 6 5
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ X C_ ( Base ` U ) ) -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 20 |
7 19
|
sylan2 |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 21 |
1 2 13 14
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` X ) e. ( LSubSp ` U ) ) |
| 22 |
20 21
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ._|_ ` X ) e. ( LSubSp ` U ) ) |
| 23 |
6 14
|
lssss |
|- ( ( ._|_ ` X ) e. ( LSubSp ` U ) -> ( ._|_ ` X ) C_ ( Base ` U ) ) |
| 24 |
22 23
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ._|_ ` X ) C_ ( Base ` U ) ) |
| 25 |
1 13 2 6 5
|
dochcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) C_ ( Base ` U ) ) -> ( ._|_ ` ( ._|_ ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 26 |
24 25
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ._|_ ` ( ._|_ ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) |
| 27 |
|
f1ocnvdm |
|- ( ( ( ( DIsoH ` K ) ` W ) : ( Base ` K ) -1-1-onto-> ran ( ( DIsoH ` K ) ` W ) /\ ( ._|_ ` ( ._|_ ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) e. ( Base ` K ) ) |
| 28 |
18 26 27
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) e. ( Base ` K ) ) |
| 29 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> K e. OP ) |
| 31 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 32 |
12 31
|
opoccl |
|- ( ( K e. OP /\ ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) e. ( Base ` K ) ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) e. ( Base ` K ) ) |
| 33 |
30 28 32
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) e. ( Base ` K ) ) |
| 34 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 35 |
12 34 1 13
|
dihmeet |
|- ( ( ( K e. HL /\ W e. H ) /\ ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) e. ( Base ` K ) /\ ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) e. ( Base ` K ) ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ( meet ` K ) ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) = ( ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) i^i ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) ) |
| 36 |
11 28 33 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ( meet ` K ) ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) = ( ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) i^i ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) ) |
| 37 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 38 |
12 31 34 37
|
opnoncon |
|- ( ( K e. OP /\ ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) e. ( Base ` K ) ) -> ( ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ( meet ` K ) ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) = ( 0. ` K ) ) |
| 39 |
30 28 38
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ( meet ` K ) ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) = ( 0. ` K ) ) |
| 40 |
39
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ( meet ` K ) ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( 0. ` K ) ) ) |
| 41 |
36 40
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) i^i ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( 0. ` K ) ) ) |
| 42 |
1 13
|
dihcnvid2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` ( ._|_ ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) = ( ._|_ ` ( ._|_ ` X ) ) ) |
| 43 |
26 42
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) = ( ._|_ ` ( ._|_ ` X ) ) ) |
| 44 |
31 1 13 5
|
dochvalr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` ( ._|_ ` X ) ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) |
| 45 |
26 44
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) |
| 46 |
1 13 5
|
dochoc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ._|_ ` X ) ) |
| 47 |
20 46
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` X ) ) ) = ( ._|_ ` X ) ) |
| 48 |
45 47
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) = ( ._|_ ` X ) ) |
| 49 |
43 48
|
ineq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ( ( DIsoH ` K ) ` W ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) i^i ( ( ( DIsoH ` K ) ` W ) ` ( ( oc ` K ) ` ( `' ( ( DIsoH ` K ) ` W ) ` ( ._|_ ` ( ._|_ ` X ) ) ) ) ) ) = ( ( ._|_ ` ( ._|_ ` X ) ) i^i ( ._|_ ` X ) ) ) |
| 50 |
37 1 13 2 4
|
dih0 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 0. ` K ) ) = { .0. } ) |
| 51 |
50
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ( DIsoH ` K ) ` W ) ` ( 0. ` K ) ) = { .0. } ) |
| 52 |
41 49 51
|
3eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ( ._|_ ` ( ._|_ ` X ) ) i^i ( ._|_ ` X ) ) = { .0. } ) |
| 53 |
10 52
|
sseqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( X i^i ( ._|_ ` X ) ) C_ { .0. } ) |
| 54 |
1 2 11
|
dvhlmod |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> U e. LMod ) |
| 55 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> X e. S ) |
| 56 |
1 2 13 3
|
dihrnlss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ._|_ ` X ) e. ran ( ( DIsoH ` K ) ` W ) ) -> ( ._|_ ` X ) e. S ) |
| 57 |
20 56
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( ._|_ ` X ) e. S ) |
| 58 |
3
|
lssincl |
|- ( ( U e. LMod /\ X e. S /\ ( ._|_ ` X ) e. S ) -> ( X i^i ( ._|_ ` X ) ) e. S ) |
| 59 |
54 55 57 58
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( X i^i ( ._|_ ` X ) ) e. S ) |
| 60 |
4 3
|
lss0ss |
|- ( ( U e. LMod /\ ( X i^i ( ._|_ ` X ) ) e. S ) -> { .0. } C_ ( X i^i ( ._|_ ` X ) ) ) |
| 61 |
54 59 60
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> { .0. } C_ ( X i^i ( ._|_ ` X ) ) ) |
| 62 |
53 61
|
eqssd |
|- ( ( ( K e. HL /\ W e. H ) /\ X e. S ) -> ( X i^i ( ._|_ ` X ) ) = { .0. } ) |