| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dochnoncon.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dochnoncon.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
dochnoncon.s |
|- S = ( LSubSp ` U ) |
| 4 |
|
dochnoncon.z |
|- .0. = ( 0g ` U ) |
| 5 |
|
dochnoncon.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
| 6 |
|
dochnel2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
|
dochnel2.t |
|- ( ph -> T e. S ) |
| 8 |
|
dochnel2.x |
|- ( ph -> X e. ( T \ { .0. } ) ) |
| 9 |
8
|
eldifbd |
|- ( ph -> -. X e. { .0. } ) |
| 10 |
8
|
eldifad |
|- ( ph -> X e. T ) |
| 11 |
|
elin |
|- ( X e. ( T i^i ( ._|_ ` T ) ) <-> ( X e. T /\ X e. ( ._|_ ` T ) ) ) |
| 12 |
1 2 3 4 5
|
dochnoncon |
|- ( ( ( K e. HL /\ W e. H ) /\ T e. S ) -> ( T i^i ( ._|_ ` T ) ) = { .0. } ) |
| 13 |
6 7 12
|
syl2anc |
|- ( ph -> ( T i^i ( ._|_ ` T ) ) = { .0. } ) |
| 14 |
13
|
eleq2d |
|- ( ph -> ( X e. ( T i^i ( ._|_ ` T ) ) <-> X e. { .0. } ) ) |
| 15 |
11 14
|
bitr3id |
|- ( ph -> ( ( X e. T /\ X e. ( ._|_ ` T ) ) <-> X e. { .0. } ) ) |
| 16 |
15
|
biimpd |
|- ( ph -> ( ( X e. T /\ X e. ( ._|_ ` T ) ) -> X e. { .0. } ) ) |
| 17 |
10 16
|
mpand |
|- ( ph -> ( X e. ( ._|_ ` T ) -> X e. { .0. } ) ) |
| 18 |
9 17
|
mtod |
|- ( ph -> -. X e. ( ._|_ ` T ) ) |