Step |
Hyp |
Ref |
Expression |
1 |
|
dochnoncon.h |
|- H = ( LHyp ` K ) |
2 |
|
dochnoncon.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
dochnoncon.s |
|- S = ( LSubSp ` U ) |
4 |
|
dochnoncon.z |
|- .0. = ( 0g ` U ) |
5 |
|
dochnoncon.o |
|- ._|_ = ( ( ocH ` K ) ` W ) |
6 |
|
dochnel2.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
dochnel2.t |
|- ( ph -> T e. S ) |
8 |
|
dochnel2.x |
|- ( ph -> X e. ( T \ { .0. } ) ) |
9 |
8
|
eldifbd |
|- ( ph -> -. X e. { .0. } ) |
10 |
8
|
eldifad |
|- ( ph -> X e. T ) |
11 |
|
elin |
|- ( X e. ( T i^i ( ._|_ ` T ) ) <-> ( X e. T /\ X e. ( ._|_ ` T ) ) ) |
12 |
1 2 3 4 5
|
dochnoncon |
|- ( ( ( K e. HL /\ W e. H ) /\ T e. S ) -> ( T i^i ( ._|_ ` T ) ) = { .0. } ) |
13 |
6 7 12
|
syl2anc |
|- ( ph -> ( T i^i ( ._|_ ` T ) ) = { .0. } ) |
14 |
13
|
eleq2d |
|- ( ph -> ( X e. ( T i^i ( ._|_ ` T ) ) <-> X e. { .0. } ) ) |
15 |
11 14
|
bitr3id |
|- ( ph -> ( ( X e. T /\ X e. ( ._|_ ` T ) ) <-> X e. { .0. } ) ) |
16 |
15
|
biimpd |
|- ( ph -> ( ( X e. T /\ X e. ( ._|_ ` T ) ) -> X e. { .0. } ) ) |
17 |
10 16
|
mpand |
|- ( ph -> ( X e. ( ._|_ ` T ) -> X e. { .0. } ) ) |
18 |
9 17
|
mtod |
|- ( ph -> -. X e. ( ._|_ ` T ) ) |