Step |
Hyp |
Ref |
Expression |
1 |
|
dochdmj1.h |
|
2 |
|
dochdmj1.u |
|
3 |
|
dochdmj1.v |
|
4 |
|
dochdmj1.o |
|
5 |
|
simp1 |
|
6 |
|
simp2 |
|
7 |
|
simp3 |
|
8 |
6 7
|
unssd |
|
9 |
|
ssun1 |
|
10 |
9
|
a1i |
|
11 |
1 2 3 4
|
dochss |
|
12 |
5 8 10 11
|
syl3anc |
|
13 |
|
ssun2 |
|
14 |
13
|
a1i |
|
15 |
1 2 3 4
|
dochss |
|
16 |
5 8 14 15
|
syl3anc |
|
17 |
12 16
|
ssind |
|
18 |
|
eqid |
|
19 |
1 18 2 3 4
|
dochcl |
|
20 |
19
|
3adant3 |
|
21 |
1 18 2 3 4
|
dochcl |
|
22 |
21
|
3adant2 |
|
23 |
1 18
|
dihmeetcl |
|
24 |
5 20 22 23
|
syl12anc |
|
25 |
1 18 4
|
dochoc |
|
26 |
5 24 25
|
syl2anc |
|
27 |
1 2 3 4
|
dochssv |
|
28 |
27
|
3adant3 |
|
29 |
|
ssinss1 |
|
30 |
28 29
|
syl |
|
31 |
1 2 3 4
|
dochssv |
|
32 |
5 30 31
|
syl2anc |
|
33 |
1 2 3 4
|
dochocss |
|
34 |
33
|
3adant3 |
|
35 |
1 2 3 4
|
dochocss |
|
36 |
35
|
3adant2 |
|
37 |
|
unss12 |
|
38 |
34 36 37
|
syl2anc |
|
39 |
|
inss1 |
|
40 |
39
|
a1i |
|
41 |
1 2 3 4
|
dochss |
|
42 |
5 28 40 41
|
syl3anc |
|
43 |
1 2 3 4
|
dochssv |
|
44 |
43
|
3adant2 |
|
45 |
|
inss2 |
|
46 |
45
|
a1i |
|
47 |
1 2 3 4
|
dochss |
|
48 |
5 44 46 47
|
syl3anc |
|
49 |
42 48
|
unssd |
|
50 |
38 49
|
sstrd |
|
51 |
1 2 3 4
|
dochss |
|
52 |
5 32 50 51
|
syl3anc |
|
53 |
26 52
|
eqsstrrd |
|
54 |
17 53
|
eqssd |
|